Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a novel model predictive control (MPC) scheme is introduced, by integrating direct and indirect neural control methodologies. The proposed approach makes use of a robust inverse radial basis function (RBF) model taking into account the applicability domain criterion, in order to provide a suitable initial starting point for the optimizer, thus helping to solve the optimization problem faster. The performance of the proposed controller is evaluated on the control of a highly nonlinear system with fast dynamics and compared with different control schemes. Results show that the proposed approach outperforms the rivaling schemes in terms of response; moreover, it solves the optimization problem in less than one sampling period, thus effectively rendering MPC-based controllers capable of handling systems with fast dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2017.09.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!