AI Article Synopsis

  • Bright light therapy (BLT) is explored as a treatment for acute bipolar depression, alongside traditional methods, to evaluate its effectiveness and safety.
  • In a study of 74 participants, those receiving BLT showed significantly improved depression symptoms compared to a control group, with a response rate of 78.19% versus 43.33%.
  • The therapy had a median onset of about 4.33 days, with no cases of hypomania or serious side effects reported, supporting BLT as a safe adjunctive treatment.

Article Abstract

Background: Bright light therapy (BLT) is an effective treatment for seasonal affective disorder and non- seasonal depression. The efficacy of BLT in treating patients with bipolar disorder is still unknown.

Aims: The aim of this study is to examine the efficacy, onset time and clinical safety of BLT in treating patients with acute bipolar depression as an adjunctive therapy (trial registration at ClinicalTrials.gov: NCT02009371).

Methods: This was a multi-center, single blind, randomized clinical trial. Seventy-four participants were randomized in one of two treatment conditions: BLT and control (dim red light therapy, dRLT). Sixty-three participants completed the study (33 BLT, 30 dRLT). Light therapy lasted for two weeks, one hour every morning. All participants were required to complete several scales assessments at baseline, and at the end of weeks 1 and 2. The primary outcome measures were the clinical efficacy of BLT which was assessed by the reduction rate of HAMD-17 scores, and the onset time of BLT which was assessed by the reduction rate of QIDS-SR16 scores. The secondary outcome measures were rates of switch into hypomania or mania and adverse events.

Results: 1) Clinical efficacy: BLT showed a greater ameliorative effect on bipolar depression than the control, with response rates of 78.19% vs. 43.33% respectively (p < 0.01). 2) Onset day: Median onset day was 4.33 days in BLT group. 3) BLT-emergent hypomania: No participants experienced symptoms of hypomania. 4) Side effects: No serious adverse events were reported.

Conclusion: BLT can be considered as an effective and safe adjunctive treatment for patients with acute bipolar depression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2017.09.038DOI Listing

Publication Analysis

Top Keywords

light therapy
16
bipolar depression
16
clinical efficacy
12
onset time
12
acute bipolar
12
efficacy blt
12
blt
10
efficacy onset
8
bright light
8
depression adjunctive
8

Similar Publications

This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infrared (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release.

View Article and Find Full Text PDF

Bioorthogonalized light-responsive click-and-uncage platform has enabled precise cell surface engineering and timed payload release, but most of such photoactivatable prodrugs have "always-on" photoactivity leading to the dark toxicity. On the other hand, the conditionally activatable photocage is limited to the application of fluorogenic probe/photosensitizer liberation. Herein, we devise a conditionally activatable theranostic platform based on the tetrazine (Tz)-boron-dipyrromethene (BODIPY) construct, in which tetrazine serves as a quencher motif to disable both the fluorescence and photoresponsivity of BODIPY.

View Article and Find Full Text PDF

The convergence of nanotechnology and tissue engineering has paved the way for innovative cancer treatments that leverage the unique light absorption properties of nanomaterials. Indeed, photothermal therapy (PTT) and photodynamic therapy (PDT) utilize nanomaterials to convert near-infrared light into therapeutic energy for cancer treatment. This study focuses on the application of poly(lactic--glycolic acid) (PLGA) scaffolds, enhanced by graphene oxide, TiCT MXene, and TiS transition metal dichalcogenides for PDT and PTT treatments evaluated within 3D-bioprinted breast cancers.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease caused by the deficiency of one of the enzymes involved in cortisol synthesis. More than 95% of the cases occur as a result of defects in the gene encoding 21-hydroxylase (CYP21A2). 21 hydroxylase deficiency has been divided into classical and non-classical forms.

View Article and Find Full Text PDF

In this study, the mesoporous FeO nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!