While current block diagonal constrained subspace clustering methods are performed explicitly on the original data space, in practice, it is often more desirable to embed the block diagonal prior into the reproducing kernel Hilbert feature space by kernelization techniques, as the underlying data structure in reality is usually nonlinear. However, it is still unknown how to carry out the embedding and kernelization in the models with block diagonal constraints. In this paper, we shall take a step in this direction. First, we establish a novel model termed implicit block diagonal low-rank representation (IBDLR), by incorporating the implicit feature representation and block diagonal prior into the prevalent low-rank representation method. Second, mostly important, we show that the model in IBDLR could be kernelized by making use of a smoothed dual representation and the specifics of a proximal gradient-based optimization algorithm. Finally, we provide some theoretical analyses for the convergence of our optimization algorithm. Comprehensive experiments on synthetic and real-world data sets demonstrate the superiorities of our IBDLR over state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2017.2764262DOI Listing

Publication Analysis

Top Keywords

block diagonal
24
low-rank representation
12
implicit block
8
diagonal low-rank
8
diagonal prior
8
optimization algorithm
8
diagonal
6
representation
5
block
5
representation current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!