Temporal Occurrence and Niche Preferences of Phytophthora spp. Causing Brown Rot of Citrus in the Central Valley of California.

Phytopathology

First, fifth, and sixth authors: Department of Plant Pathology and Microbiology, University of California, Riverside 92521; second author: School of Natural Sciences, California State University, Monterey Bay, Seaside 93955; third author: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, CA 93905; and fourth author: Crops Pathology and Genetics Research Unit, USDA-ARS, and Department of Plant Pathology, University of California, Davis 95616.

Published: March 2018

Brown rot of citrus fruit is caused by several species of Phytophthora and is currently of serious concern for the California citrus industry. Two species, Phytophthora syringae and P. hibernalis, are quarantine pathogens in China, a major export market for California citrus. To maintain trade and estimate the risk of exporting a quarantine pathogen, the distribution and frequency of Phytophthora spp. causing brown rot of orange in major growing areas of California was investigated. Symptomatic fruit were collected from navel (winter to late spring) and Valencia (late spring to summer) orange orchards from 2013 to 2015. Species identification of isolates was based on morphological characteristics, random amplified polymorphic DNA banding patterns, and sequencing of the internal transcribed spacer and the partial cox2/spacer/cox1 regions from axenic cultures, or directly on DNA from fruit tissue using a multiplex TaqMan quantitative polymerase chain reaction assay. In winter samplings, the incidence of P. syringae based on the number of fruit with Phytophthora spp. detection ranged from 73.6 to 96.1% for the two counties surveyed. The remaining isolates were identified as P. citrophthora. In late spring or summer, only P. citrophthora was recovered. P. hibernalis and P. nicotianae were not detected in any fruit with brown rot symptoms. These results indicate that P. syringae is currently an important brown rot pathogen of citrus fruit in California during the cooler seasons of the year. In winter 2016 and 2017, P. syringae was recovered by pear baiting at a high incidence from leaf litter and from a small number of rhizosphere soil or root samples but not from living leaves on the tree. In contrast, P. citrophthora was rarely found in leaf litter but was commonly detected in the rhizosphere. Thus, leaf litter is a major inoculum source for P. syringae and this species occupies a distinct ecological niche.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-09-17-0315-RDOI Listing

Publication Analysis

Top Keywords

brown rot
20
phytophthora spp
12
late spring
12
leaf litter
12
spp causing
8
causing brown
8
rot citrus
8
citrus fruit
8
species phytophthora
8
california citrus
8

Similar Publications

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Black root rot is a dangerous disease affecting many crops. It is caused by pathogens formerly known as and then reclassified as two cryptic species, and . The aim of this study was to perform species identification, morphological characterization, and pathogenicity tests for fungal isolates obtained from tobacco roots with black root rot symptoms in Poland.

View Article and Find Full Text PDF

Pear fruit brown rot, caused by , affects pear fruit yields and quality. The present study determined T6 (T6) peptaibols as a biological control alternative to synthetic fungicides and assessed its efficacy against through dual plate culture and surface spraying at different concentrations. T6 peptaibols effectively inhibited growth, achieving an 85.

View Article and Find Full Text PDF

The commercial production of passion fruit is geographically limited (California, Florida, and Hawaii), but the development of cold-tolerant varieties could expand it beyond warm-climate states (Stafne et.al. 2023).

View Article and Find Full Text PDF

Wood-degrading brown-rot fungi primarily target carbohydrates, leaving the lignin modified and potentially valuable for valorization. Here, we report a comprehensive comparison of how degrades hardwood and softwood, which have fundamentally different lignin structures. By harnessing the latest advancements in analytical methodologies, we show that removes more lignin from wood (up to 36%) than previously reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!