Macroscopic frictional sliding emerges from atomic-scale interactions and processes at the contact interface, but bridging the gap between micro and macro scales still remains an unsolved challenge. Direct imaging of the contact surface and simultaneous measurement of stress fields during macroscopic frictional slip revealed the formation of crack precursors, questioning the traditional picture of frictional contacts described in terms of a single degree of freedom. Here we study the onset of frictional slip on the atomic scale by simulating the motion of an aluminum block pushed by a slider on a copper substrate. We show the formation of dynamic slip front propagation and precursory activity that resemble macroscopic observations. The analysis of stress patterns during slip, however, reveals subtle effects due to the lattice structures that hinder a direct application of linear elastic fracture mechanics. Our results illustrate that dynamic front propagation arises already on the atomic scales and shed light on the connections between atomic-scale and macroscopic friction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b02414 | DOI Listing |
PLoS Comput Biol
January 2025
Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.
Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.
View Article and Find Full Text PDFBiomedicines
December 2024
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Department of Surgery, University of Virginia, Charlottesville, VA, United States.
Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!