Sarcoidosis is a complex, polygenic disease of unknown cause with diverse clinical phenotypes, ranging from self-limited, asymptomatic disease to life-altering symptoms and early disease-related mortality. It is unlikely that a single common environmental exposure (e.g., infection, antigen) entirely explains the disease, and numerous genetic mutations are associated with the disease. As such, it is reasonable to assume, as with other phenotypically diverse diseases, that distinct genetic mechanisms and related biological biomarkers will serve to further define sarcoidosis subphenotypes, mechanisms, and possibly etiology, thus guiding personalized care. The fields of "omics" and systems biology research are widely applied to understand polygenic and phenotypically diverse diseases, such as sarcoidosis. "Omics" refers to technologies that allow comprehensive profiling of sets of molecules in an organism. Systems biology applies advanced computational approaches to make sense of the enormous data sets that are typically generated from "omics" platforms. The primary objectives of this article are to review the available "omics" tools, assess the current status of "omics" and systems biology research in the field of sarcoidosis, and consider how this technology could be applied to advance our understanding of the mechanistic underpinnings of disease and to develop novel treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822413 | PMC |
http://dx.doi.org/10.1513/AnnalsATS.201707-567OT | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFAnnu Rev Biomed Eng
January 2025
1School of Engineering, Brown University, Providence, Rhode Island, USA;
The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea.
The E3 ubiquitin ligase neural precursor cell-expressed developmentally down-regulated 4 (NEDD4) is involved in various cancer signaling pathways, including PTEN/AKT. However, its role in promoting gastric cancer (GC) progression is unclear. This study was conducted to elucidate the role of NEDD4 in GC progression.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands.
The thesis project is an essential step to obtain an MSc degree. Within STEM and Life Sciences disciplines, computational theses have specific characteristics that differentiate them from wet laboratory ones. In this article, we present Ten simple rules to direct and support Master students who are about to start a computational research project for their Master thesis.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America.
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!