Background: The use of electrospinning technology (ET) in fabrication of threedimensional biodegradable electrospun nanofibers scaffolds (BENS) has recently gained considerable attention in tissue engineering. BENS are superior to other existing scaffolds in tissue regeneration as they provide high surface area-to-volume ratio, possess high porosity, and offer a biomimetic environment in a nanometer scale.
Objectives: To fabricate & characterize BENS using Poly (ethylene glycol) (PEG35000) as a biodegradable polymer loaded with Amoxicillin Trihydrate (AMX) for use as a wound dressing.
Method: Solutions of PEG35000 in chloroform of varying concentrations were used to fabricate BENS using ET. Blank & 1% w/v AMX-loaded BENS were fabricated & characterized. Morphology of BENS were assessed using Scanning Electron Microscopy (SEM). Fourier Transform Infrared (FT-IR) Spectroscopy was used to identify the interaction between PEG35000 and AMX. Differential Scanning Calorimetry (DSC) was used to assess the crystallinity and thermal behavior of the prepared BENS. The X-Ray Diffraction (XRD) analysis for the blank and drug loaded electrospun fibers was carried out to identify the changes in their crystalline pattern. The in vitro antibacterial activity against common skin Gram-negative and Gram-positive pathogens was also tested.
Results: Blank & AMX loaded 35% w/v PEG35000 solutions produced the most homogenous and intact nanofibers. Major bands of AMX in FTIR were clearly observed in the spectrum of AMX with PEG35000 post electrospinning. Moreover, DSC thermograms indicated that AMX existed in its amorphous dispersed state within PEG fibers supported by the disappearance of its melting peak at 190°C and confirmed by the complete absence of AMX crystals under SEM. Finally, the results of DSC were confirmed by XRD patterns. Characterizing XRD peaks of AMX loaded with PEG3500 post electrospinning disappeared as an indication of the complete dispersion of AMX in the loaded fibers and its complete conversion to the amorphous form. The in vitro antibacterial assay confirmed the efficiency of the drug loaded fibers against the common skin pathogens.
Conclusion: BENS using PEG35000 loaded with AMX were successfully fabricated and characterized. Our findings show that PEG BENS has features that make it a promising candidate for wound healing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2211738504666160720125322 | DOI Listing |
Macromol Biosci
January 2025
Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul, 34722, Türkiye.
Periodontal diseases, if untreated, can cause gum recession and tooth root exposure, resulting in infection and irreversible damage. Traditional treatments using autologous grafts are painful and often result in postoperative complications. Scaffolds offer a less invasive alternative, promoting cell proliferation and healing without additional surgery, thus enhancing comfort for patients and doctors.
View Article and Find Full Text PDFHeliyon
August 2024
Leicester Institute for Pharmaceutical Innovation (LIPI), Leicester School of Pharmacy, De Montfort University, Leicester, UK.
Addressing the growing challenges of periodontal and peri-implant diseases, this study first reports a promising advancement in precision dentistry: an intricately formulated biopolymer spray designed for precise, localized drug delivery during tailored dental procedures. Poly (lactic--glycolic acid) (PLGA), recognized for its controlled release, biodegradability, and FDA-approved biocompatibility, forms the core of this formulation. Utilizing the double emulsion method, PLGA microparticles (PLGA-MPs) were loaded with dental antibiotics: sodium amoxicillin (AMX-Na), trihydrate amoxicillin (AMX-Tri), and metronidazole (Met).
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Biomaterials Division, NYU Dentistry, New York, NY 10010, USA.
The purpose of this in vitro study was to develop calcium sulfate (CS)-based disks infused with an antimicrobial drug, which can be used as a post-surgical treatment modality for osteomyelitis. CS powder was embedded with 10% antibiotic, amoxicillin (AMX) or moxifloxacin (MFX), to form composite disks 11 mm in diameter that were tested for their degradation and antibiotic release profiles. For the disk degradation study portion, the single drug-loaded disks were placed in individual meshes, subsequently submerged in phosphate-buffered saline (PBS), and incubated at 37 °C.
View Article and Find Full Text PDFHuan Jing Ke Xue
July 2024
School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Int J Biol Macromol
June 2024
Center for Nanotechnology & Biomaterials Research, Marmara University, Istanbul, Turkey; Department of Metallurgy and Materials Engineering, Faculty of Technology, Marmara University, Istanbul, Turkey. Electronic address:
A middle ear infection occurs due to the presence of several microorganisms behind the eardrum (tympanic membrane) and is very challenging to treat due to its unique location and requires a well-designed treatment. If not treated properly, the infection can result in severe symptoms and unavoidable side effects. In this study, excellent biocompatible ethyl cellulose (EC) and biodegradable polyhydroxybutyrate (PHB) biopolymer were used to fabricate drug-loaded nanofiber scaffolds using an electrospinning technique to overcome antibiotic overdose and insufficient efficacy of drug release during treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!