In current research, simple centroid mixture design was applied to evaluate the interaction effects between three selected food grade stabilizers, namely, Tween 80, gelatine and pectin as stabilizing system in the formation of carotenoid nanoparticles through solvent displacement process. Both, particle size and β-carotene loss of produced nanodispersions, as selected response factors, special cubic regression models with acceptable determination coefficient (>90%) was obtained. The multiple response optimization analysis showed that the overall optimum concentration for stabilizers will be 35% w/w Tween 80, 46% w/w gelatine and 19% w/w pectin, which led to the production of β-carotene nanoparticles of spherical shape with minimum particle size of 155.8 nm and carotenoids loss of 25.3% w/w.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629146PMC
http://dx.doi.org/10.1007/s13197-017-2764-8DOI Listing

Publication Analysis

Top Keywords

mixture design
8
particle size
8
β-carotene nanodispersions
4
nanodispersions synthesis
4
synthesis three-component
4
three-component stabilizer
4
stabilizer system
4
system mixture
4
design current
4
current simple
4

Similar Publications

The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.

View Article and Find Full Text PDF

Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.

View Article and Find Full Text PDF

The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (AlO). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the AlO layer and carbon deposition.

View Article and Find Full Text PDF

Hydroxylation, an extensive post-translational modification on proline, is critical for the modulation of protein structures, further dominating their functions in life systems. However, current mass spectrometry-based identification, could hardly distinguish hydroxylation from neighboring oxidation due to the same mass shifts, as well as challenges posed by low abundance and exogenous oxidation during sample preparation. To address these, an engineered nanopore was designed, capable of discriminating single hydroxyl group, to achieve the identification of proline hydroxylation on individual native peptides directly in the mixture.

View Article and Find Full Text PDF

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!