β-Ti alloys have low elastic modulus, good specific strength and high corrosion resistance for biomaterial applications. Noble elements, such as Nb, Ta and Mo, are used to obtain β-Ti due to their chemical biocompatibility. However, due to their refractory nature, β-Ti requires specific processing routes. Powder metallurgy (P/M) allows for the development of new β-Ti alloys with decreasing costs, but dealing with high-elemental-content alloys can lead to a lack of diffusion and grain growth. One method to refine the structure and improve mechanical properties is a severe plastic deformation technique through high-pressure torsion (HPT). The aim of this work was to evaluate the conversion of P/M porous β-Ti-35Nb-10Ta-xFe alloys to dense nanostructures through high-pressure torsion in one deformation step and the influence of the structure variation on the properties and microstructure. TEM analysis and ASTAR crystallographic mapping was utilized to characterize the nanostructures, and the properties of P/M β Ti-35Nb-10Ta-xFe alloys processed by HPT were compared. The initial microstructure consisted mainly by the β-Ti phase with some α-Ti phase at the grain boundaries. The HPT process refined the microstructure from 50 µm (P/M) down to nanostructured grains of approximately 50 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5648878PMC
http://dx.doi.org/10.1038/s41598-017-13074-zDOI Listing

Publication Analysis

Top Keywords

β-ti alloys
12
high-pressure torsion
12
β-ti
6
alloys
6
porous dense
4
dense nanostructured
4
nanostructured β-ti
4
alloys high-pressure
4
torsion β-ti
4
alloys low
4

Similar Publications

Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.

View Article and Find Full Text PDF

Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn.

View Article and Find Full Text PDF

Aim: To assess hard as well as soft peri-implant tissues within cases having two lost adjacent anterior teeth treated through placing either two implants with two separate crowns or only an implant along with a crown with a cantilever, and evaluating the effect of polyetheretherketone (PEEK) restoration on cantilever design up to 18 months after functional loading.

Materials And Methods: Twenty-seven participants (15 males and 12 females; mean age, 38.6 years; range 20-50 years) with missing two adjacent anterior teeth were treated with implant system (Flotecno implant system, Italy).

View Article and Find Full Text PDF

Solid-State Precipitation of Silver Nanoparticles Nucleated during Al Anodizing: Mechanism and Antibacterial Properties.

ACS Appl Bio Mater

January 2025

Laboratório de Processos Eletroquímicos e Corrosão-ELETROCORR, Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.

This study presents an innovative approach to creating antibacterial aluminum surfaces by combining the antibacterial properties of silver nanoparticles (Ag NPs) with the nanoarchitecture of anodized aluminum oxide in one step. An Al-Ag alloy containing 10 wt % Ag was synthesized and anodized in 0.3 M oxalic acid.

View Article and Find Full Text PDF

Effect of ambient conditions in friction surfacing.

Weld World

November 2024

Solid State Materials Processing, Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Geesthacht, Germany.

Friction surfacing (FS) is a solid-state deposition process in which layers are deposited on a substrate surface by frictional heat and severe plastic deformation of a consumable stud material below its melting temperature. Bonding occurs due to accelerated diffusion. The deposition of several layers on top of each other is referred to as multi-layer FS (MLFS), a promising candidate for additive manufacturing (AM) as it offers advantages over fusion-based AM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!