Disaster waste management in Italy: Analysis of recent case studies.

Waste Manag

Department of Life and Environmental Sciences, Università Politecnica of Marche, Via Brecce Bianche, 60131 Ancona, Italy. Electronic address:

Published: January 2018

The geomorphology of the Italian territory causes the incidence of many disasters like earthquakes and floods, with the consequent production of large volumes of waste. The management of such huge flows, produced in a very short time, may have a high impact on the whole emergency response. Moreover, historical data related to disaster waste management are often not easily accessible; on the other hand, the availability of data concerning previous events could support the emergency managers, that have to take a decision in a very short time. In this context, the present paper analyses four relevant recent case studies in Italy, dealing with disaster waste management after geologic and hydrologic natural events. Significant differences have been observed in the quantity and types of generated wastes, and, also, in the management approach. Such differences are mainly associated with the kind of disaster (i.e. earthquake vs. flood), to the geographical location (i.e. internal vs. coastal area), to the urbanisation level (i.e. industrial vs. urban). The study allowed the identification of both strengths and weaknesses of the applied waste management strategies, that represent "lessons to learn" for future scenarios. Even though it deals with Italian case studies, this manuscript may have a high impact also at international level, making available for the first-time emergency waste management data, that are considered an indispensable support for decision makers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2017.10.012DOI Listing

Publication Analysis

Top Keywords

waste management
24
disaster waste
12
case studies
12
short time
8
high impact
8
management
7
waste
5
disaster
4
management italy
4
italy analysis
4

Similar Publications

Ozone disinfection of treated wastewater for inactivation of Cryptosporidium parvum for agricultural irrigation.

Water Environ Res

January 2025

Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico.

The reliance on agriculture in many nations has increased the use of treated wastewater for irrigation. However, reclaimed water still poses health risks from resistant pathogens like Cryptosporidium spp. Ozone, a strong disinfectant, has been used in water treatment.

View Article and Find Full Text PDF

Development of nutri-functional paneer whey-based kefir drink.

J Food Sci Technol

February 2025

Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125001 Haryana India.

Present research focused on biotransformation of paneer whey into a functional fermented product using kefir culture. Out of 9 formulations (S-1 to S-9) tried; S-8, obtained by fermenting FOS (1%) supplemented paneer whey and adding 8% refined sugar, was identified as the most acceptable product. Nutritional analysis revealed the following as per 100 g of product: 44.

View Article and Find Full Text PDF

Microbial biopesticides: A one health perspective on benefits and risks.

One Health

June 2025

Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.

Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!