Gold nanoparticles (AuNPs) were synthesized in one-step by reducing gold salt using nontoxic and biodegradable chitosan as dual roles of reducing agent and stabilizer. The obtained AuNPs were characterized with UV-vis spectroscopy and transmission electron microscopy. The results indicated that control over the size and shape of AuNPs is achieved through the careful selection of experimental conditions, such as reaction temperature, reaction time, concentration of gold salt and chitosan, and chitosan molecular parameters, i.e., degree of deacetylation (DD) and molecular weight (MW). At low chitosan concentration (0.005% and 0.01% (w/v)), individual spherical AuNPs with average particle size around 10nm were obtained regardless of chitosan DD and MW, while anisotropic AuNPs were obtained at concentration above 0.05% (w/v) for all investigated chitosan at the optimum condition (1mL of 1mmol/L HAuCl added to 3mL of chitosan solution reacted for 120min at 70°C). The growth of larger polygonal AuNPs was promoted as the higher concentration and lower DD chitosan was used as reducing agent and stabilizer. Au nanoplate was synthesized by water-soluble chitosan (M 566kDa, DD 53%) at concentration above 0.15% (w/v). Chitooligomers (M 2.4kDa, DD 94%) showed the highest reduction ability for Au and the synthesized AuNPs exhibited aggregation on morphology. It was considered that chitosan DD and concentration played a more important role than MW in the size and shape of AuNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2017.09.032 | DOI Listing |
Gut Microbes
December 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
IgA nephropathy (IgAN) is related to the balance of gut microbiota. However, it is unclear whether changes in the gut microbiota can cause IgAN or attenuate its progression. This study employed IgAN and human microbiota-associated (HMA)-IgAN models to investigate the impact of IgAN on gut microbiota alteration and the mechanisms by which gut microbiota might trigger IgAN.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Arak University, Arak, Iran. Electronic address:
Polysaccharides such as chitosan, alginate, cellulose, and carrageenan have emerged as promising adsorbents due to their biodegradability, abundant availability, and diverse chemical functionality. These biopolymers exhibit promising performance for adsorption of a wide range of pollutants including heavy metals (e.g.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely professional University, Phagwara, Punjab, India. Electronic address:
Gallic acid (GA) has emerged as a low biodegradable and high acidity industrial effluent. Due to mutagenic and carcinogenic nature of GA, it becomes essential to remove it from wastewater. Different chemical, physical and biological methods are being used for this purpose.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China; Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
Oral ulcers are prone to recurrence and often complicated by bacterial infections. Currently, antibiotics, glucocorticoids, and anesthetics are commonly employed in clinical practice to alleviate symptoms. However, these medications exhibit limited retention in the moist and dynamic environment of the oral cavity, and their long-term use may lead to various side effects or drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!