MicroRNAs (miRNAs) are a new class of gene expression regulators that have been implicated in tumorigenesis and modulation of the responses to cancer treatment including that of human non-small cell lung cancer (NSCLC). However, the role of miR-34a in ionizing radiation (IR)-induced senescence in NSCLC cells remains poorly understood. Here we report that IR-induced premature senescence correlates with upregulation of miR-34a expression in NSCLC cells. Ectopic overexpression of miR-34a by transfection with synthetic miR-34a mimics markedly enhances IR-induced senescence, whereas inhibition of miR-34a by transfection with a synthetic miR-34a inhibitor attenuates IR-induced senescence. Clonogenic assays reveal that treatment with miR-34a mimics augments IR-induced cell killing in human NSCLC cells. Mechanistically, we found that the senescence-promoting effect of miR-34a is associated with a dramatic down-regulation of c-Myc (Myc) expression, suggesting that miR-34a may promote IR-induced senescence via targeting Myc. In agreement with this suggestion, knockdown of Myc expression by RNAi recapitulates the senescence-promoting effect of miR-34a and enhances IR-induced cell killing in NSCLC cells. Collectively, these results demonstrate a previously unrecognized role for miR-34a in modulating IR-induced senescence in human NSCLC cells and suggest that pharmacological intervention of miR-34a expression may represent a new therapeutic strategy for improving the efficacy of lung cancer radiotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642517 | PMC |
http://dx.doi.org/10.18632/oncotarget.19267 | DOI Listing |
Chin Med
December 2024
Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
Background: To investigate the long term effects of ionizing radiation (IR) on hematopoietic stem/progenitor cells (HSPCs), immune tissues and cells, and the effects of Siwu decoction (SWD) on immune senescence mice.
Methods: C57BL/6 J mice were exposed to 6.0 Gy Co γ irradiation.
Cell Commun Signal
December 2024
State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
Microorganisms
October 2024
Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
Reactive oxygen species (ROS), byproducts of cellular metabolism and environmental factors, are linked to diseases like cancer and aging. Antioxidant peptides (AOPs) have emerged as effective countermeasures against ROS-induced damage. The genus is well known for its extraordinary resilience to ionizing radiation (IR) and possesses complex antioxidant systems designed to neutralize ROS generated by IR.
View Article and Find Full Text PDFMol Cancer Ther
November 2024
Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
Major risk factors of head and neck squamous cell carcinoma (HNSCC) are tobacco use and human papillomavirus (HPV). HPV E6 oncoprotein leads to p53 degradation, whereas HPV-negative cancers are frequently associated with TP53 mutations. Peposertib is a potent and selective, orally administered small-molecule inhibitor of the catalytic subunit of the DNA-dependent kinase (DNA-PKcs), a key regulator of non-homologous end joining (NHEJ).
View Article and Find Full Text PDFAdv Pharm Bull
October 2024
Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Purpose: Lethal ventricular arrhythmias are a significant clinical concern following reperfusion therapies in elderly patients with myocardial infarction. The combination of multi-target therapies to achieve optimal anti-arrhythmogenesis and improve the chances of successful translation for patient benefit has prompted considerable interest. This study examined the anti-arrhythmic effect of nicotinamide mononucleotide (NMN)/ubiquinol combination treatment following myocardial ischemia/reperfusion (IR) injury in aged rats, with an emphasis on the role of oxidative stress and nitric oxide (NO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!