An additional charge carrier described as its wave function is propagated in imaginary time using stepwise matrix multiplication and a correction to ensure that the simulation is norm-conserving. The propagation Hamilton operator uses the local ionization energy of a rubrene single crystal, calculated with semiempirical molecular orbital theory, as an external potential for holes to model the interaction with the underlying molecular structure. Virtual electrodes are modeled by setting the potentials in the appropriate areas to constant values with the difference corresponding to the source-drain voltage. Although imaginary time cannot be interpreted directly as time, the simulated gate-dependent imaginary transfer rate is in acceptable qualitative agreement with the experimentally measured gate-dependent hole-transfer rate through a rubrene single crystal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.7b00568 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!