The low-temperature dynamic crossover in the dielectric relaxation of ice I.

Phys Chem Chem Phys

The Hebrew University of Jerusalem, Department of Applied Physics, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.

Published: November 2017

Based on the idea of defect migration as the principal mechanism in the dielectric relaxation of ice I, the concept of low-temperature dynamic crossover was proposed. It is known that at high temperatures, the diffusion of Bjerrum and ionic defects is high and their movement may be considered to be independent. Simple switching between these two mechanisms leads to a dynamic crossover at ∼235 K. By introducing coupling between the Bjerrum and ionic defects, it is possible to describe the smooth bend in the relaxation time at low temperatures in ice I. However, because the mobility of Bjerrum orientation defects slows down at low temperatures, they may create blockages for proton hopping. The trapping of ionic defects by L-D defects for a long period of time leads to an increase in the relaxation time and causes a low-temperature crossover. This model was validated by experimental dielectric measurements using various temperature protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp05731hDOI Listing

Publication Analysis

Top Keywords

dynamic crossover
12
ionic defects
12
low-temperature dynamic
8
dielectric relaxation
8
relaxation ice
8
bjerrum ionic
8
relaxation time
8
low temperatures
8
defects
5
crossover
4

Similar Publications

Optimization algorithms play a crucial role in solving complex problems across various fields, including global optimization and feature selection (FS). This paper presents the enhanced polar lights optimization with cryptobiosis and differential evolution (CPLODE), a novel improvement upon the original polar lights optimization (PLO) algorithm. CPLODE integrates a cryptobiosis mechanism and differential evolution (DE) operators to enhance PLO's search capabilities.

View Article and Find Full Text PDF

Self-Assembly of Particles on a Curved Mesh.

Entropy (Basel)

January 2025

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Discrete statistical systems offer a significant advantage over systems defined in the continuum, since they allow for an easier enumeration of microstates. We introduce a lattice-gas model on the vertices of a polyhedron called a pentakis icosidodecahedron and draw its exact phase diagram by the Wang-Landau method. Using different values for the couplings between first-, second-, and third-neighbor particles, we explore various interaction patterns for the model, ranging from softly repulsive to Lennard-Jones-like and SALR.

View Article and Find Full Text PDF

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.

View Article and Find Full Text PDF

Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.

View Article and Find Full Text PDF

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!