AI Article Synopsis

  • The paper reviews the use of fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors in the oil and gas industry, highlighting their importance in safe and efficient drilling by providing directional data and geological information.
  • Research on these magnetic sensors in drilling applications is limited compared to other fields like biomedical and aerospace, indicating a gap that needs to be filled.
  • The paper also discusses future magnetic sensor technologies and identifies what is necessary to implement these advancements in the oil and gas sector.

Article Abstract

In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5676656PMC
http://dx.doi.org/10.3390/s17102384DOI Listing

Publication Analysis

Top Keywords

magnetic sensors
16
magnetic
8
oil/gas industry
8
downhole applications
4
applications magnetic
4
sensors
4
sensors paper
4
paper review
4
review application
4
application types
4

Similar Publications

Integration of paper-based colorimetric microdevice and magnetic nanoparticles affinity for high-throughput capture of antimicrobial resistance-reversing agent from complex natural products.

Biosens Bioelectron

December 2024

Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China. Electronic address:

Efficient analysis of active ingredient in complex natural products is crucial for drug discovery, but developing a simple method for this is challenging. The discovery of drugs against bacterial resistance is urgent because drug-resistant bacteria produce β-lactamases, which inactivate antibiotics and increase infection risks, particularly the AmpC β-lactamase. Here, an integrated analytical model based on colorimetric sensing and magnetic nanoparticles (MNPs) affinity chromatography was developed for screening AmpC β-lactamase inhibitors.

View Article and Find Full Text PDF

Emerging devices based on chiral nanomaterials.

Nanoscale

January 2025

Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.

As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, , been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods.

View Article and Find Full Text PDF

Accurate, sensitive and multiplexed detection of food-borne pathogens is crucial for assessing food safety risks. Here we present a digital DNA-amplification-free nucleic acid detection assay to achieve multiplexed and ultrasensitive detection of three food-borne pathogens. We used mesophilic Clostridium butyricum argonaute and magnetic beads in a digital carrier system (d-MAGIC).

View Article and Find Full Text PDF

The exploration of perovskite compounds incorporating actinide and divalent elements reveals remarkable characteristics. Focusing on PbBkO, RaBkO, and SrBkO, these materials were studied using density functional theory (DFT) via the CASTEP code to analyze their electronic, optical, and mechanical properties. The results show semiconductor behavior, with respective band gaps of 1.

View Article and Find Full Text PDF
Article Synopsis
  • The extraction of a submandibular-displaced mandibular third molar root is challenging for surgeons due to its closeness to important structures like the lingual nerve and sublingual artery.
  • Preoperative imaging helps locate the root, but real-time synchronization is tough because of the mandible's moving nature.
  • This study highlights the successful extraction of a residual root using a magnetic navigation system, resulting in a minimally invasive procedure with no complications or major issues reported postoperatively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!