Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties.

Molecules

Centre for Comparative Genomics, Discovery Way, Murdoch University, Perth, WA 6150, Australia.

Published: October 2017

Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson-Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG) linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3'-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151750PMC
http://dx.doi.org/10.3390/molecules22101770DOI Listing

Publication Analysis

Top Keywords

inverted deoxythymidine
12
thrombin binding
8
aptamers
8
hd1 hd22
8
deoxythymidine nucleotide
8
teg linkage
8
nuclease stability
8
blood plasma
8
construction bivalent
4
bivalent thrombin
4

Similar Publications

Objective: The COL1A1 proximal promoter contains two GC-rich regions and two inverted CCAAT boxes. The transcription factors Sp1 and CBF bind to the GC sequence at -122 to -115 bp and the inverted CCAAT box at -101 to -96 bp, respectively, and stimulate COL1A1 transcriptional activity.

Methods: To further define the regulatory mechanisms controlling COL1A1 expression by Sp1 and CBF, we introduced 2, 4, 6, or 8 thymidine nucleotides (T-tracts) at position -111 bp of the COL1A1 gene promoter to increase the physical distance between these two binding sites and examined the transcriptional activities of the resulting constructs and their response to TGF-β1.

View Article and Find Full Text PDF

Aptamers have great potential for diagnostics and therapeutics due to high specificity to target molecules. However, studies have shown that aptamers are rapidly distributed and excreted from blood circulation due to nuclease degradation. To overcome this issue and to improve in vivo pharmacokinetic properties, inverted deoxythymidine (idT) incorporation at the end of aptamer has been developed.

View Article and Find Full Text PDF

Beta-thalassemia is one of the most common monogenic inherited disorders worldwide caused by different mutations in the hemoglobin subunit beta (HBB) gene. Genome-editing based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system (CRISPR/Cas9) has raised the hope for life-long gene therapy of beta-thalassemia. In a proof-of-concept study, we describe the detailed design and assess the efficacy of a novel homology-directed repair (HDR)-based CRISPR construct for targeting the HBB locus.

View Article and Find Full Text PDF

10-23 DNAzyme is a catalytic DNA molecule capable of cleaving complementary RNA. Its high cleavage efficiency is being pursued by chemical modifications, for realizing its genetic therapeutics potential. The most efficient and nuclease-resistant DNAzyme was obtained in this study combined two modifications - 7-aminopropyl-8-aza-7-deaza-2'-deoxyadenosine (residue 1) at A9 and 3'-inverted deoxythymidine residue (T) at 3'-end.

View Article and Find Full Text PDF

Polypurine Reverse-Hoogsteen Hairpins as a Tool for Exon Skipping at the Genomic Level in Mammalian Cells.

Int J Mol Sci

April 2021

Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences & IN2UB, University of Barcelona, 08028 Barcelona, Spain.

Unlabelled: Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the gene that causes a frameshift abolishing DHFR activity.

Methods: Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!