Nearly half of college students engage in binge drinking, and blackouts (i.e., episodes of periodic memory loss) represent one common consequence of this behavior. Although researchers have begun to understand the extent to which students black out, little is known about why they do so. We conducted two studies to further our understanding of this risky health behavior. In Study 1, we conducted face-to-face interviews (N = 19) to explore students' blackout experiences. Our findings suggest that students recognize that blacking out is an unhealthy behavior; however, because such a recognition contradicts group norms about alcohol consumption, it causes them to experience dissonance, which they manage via a variety of rationalization strategies. We investigated these findings more systematically through an online survey in Study 2, in which students (N = 254) reported on their own and others' beliefs and behaviors about blacking out. Our results indicate that many of the rationalization strategies students identified in Study 1 were grounded in fallacious reasoning. We discuss the collective implications of these findings for future interventions addressing students' excessive drinking behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10410236.2017.1384351DOI Listing

Publication Analysis

Top Keywords

rationalization strategies
8
students
5
"it kind
4
kind happens"
4
happens" college
4
college students'
4
students' rationalizations
4
rationalizations blackout
4
blackout drinking
4
drinking half
4

Similar Publications

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

The substituent effect has a significant influence on the optical properties of spectral shape, width, and wavelength, and the intensities of the maximum peaks of emission (EMI) and circularly polarized luminescence (CPL). In this work, we conducted a systematic theoretical study to investigate how substituents alter the optical response in the EMI and CPL spectra of three [7]helicene derivatives at the vibronic level. To incorporate the vibronic effect, a state-of-the-art time-dependent (TD) method was used to achieve the fully converged spectra.

View Article and Find Full Text PDF

Background: The use of immune checkpoint inhibitors (CPIs) has become a dominant regimen in modern cancer therapy, however immune resistance induced by tumor-associated macrophages (TAMs) with immune suppressive and evasion properties limits responses. Therefore, the rational design of immune modulators that can control the immune suppressive properties of TAMs and polarize them, as well as dendritic cells (DCs), toward a more proinflammatory phenotype is a principal objective in cancer immunotherapy.

Methods: Here, using a protein engineering approach to enhance cytokine residence in the tumor microenvironment, we examined combined stimulation of the myeloid compartment via tumor stroma-binding granulocyte-macrophage colony-stimulating factor (GM-CSF) to enhance responses in both DCs and T cells via stroma-binding interleukin-12 (IL-12).

View Article and Find Full Text PDF

BK polyomavirus (BKPyV) is recognised as a significant viral complication of kidney transplantation. Prompt immunosuppression reduction reduces early graft failure rates due to BK polyomavirus-associated nephropathy (BKPyVAN), however modulation of immunosuppression can lead to acute rejection. Medium-to-long term graft outcomes are negatively impacted by BKPyVAN, likely due to a combination of virus-induced graft damage and host immune responses against graft alloantigens potentiated by immunosuppression reduction.

View Article and Find Full Text PDF

The excessive use of pesticides is an urgent issue facing environmental sustainability and human health. In this study, a uniform dispersion size, good fluorescence performance and mesoporous structure of a ratiometric fluorescent probe were constructed for nicosulfuron detection. A solvent-free in situ solid-phase synthesis method was used to encapsulate biomass carbon dots within mesoporous silica (CDs@mSiO₂), followed by the modification of l-cysteine-modified manganese-doped zinc sulfide quantum dots (ZnS:Mn QDs), to construct a ratiometric fluorescent probe for highly sensitive and selective detection of nicosulfuron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!