We propose a deep-learning-based classification of data pages used in holographic memory. We numerically investigated the classification performance of a conventional multilayer perceptron (MLP) and a deep neural network, under the condition that reconstructed page data are contaminated by some noise and are randomly laterally shifted. When data pages are randomly laterally shifted, the MLP was found to have a classification accuracy of 93.02%, whereas the deep neural network was able to classify data pages at an accuracy of 99.98%. The accuracy of the deep neural network is 2 orders of magnitude better than the MLP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.007327 | DOI Listing |
iScience
January 2025
Division of Optometry, Health Sciences, City University of London, London EC1V 0HB, UK.
A key property of our environment is the mirror symmetry of many objects, although symmetry is an abstract global property with no definable shape template, making symmetry identification a challenge for standard template-matching algorithms. We therefore ask whether Deep Neural Networks (DNNs) trained on typical natural environmental images develop a selectivity for symmetry similar to that of the human brain. We tested a DNN trained on such typical natural images with object-free random-dot images of 1, 2, and 4 symmetry axes.
View Article and Find Full Text PDFOphthalmol Sci
November 2024
Casey Eye Institute, Oregon Health & Science University, Portland, Oregon.
Purpose: The diagnosis of fungal keratitis using potassium hydroxide (KOH) smears of corneal scrapings enables initiation of the correct antimicrobial therapy at the point-of-care but requires time-consuming manual examination and expertise. This study evaluates the efficacy of a deep learning framework, dual stream multiple instance learning (DSMIL), in automating the analysis of whole slide imaging (WSI) of KOH smears for rapid and accurate detection of fungal infections.
Design: Retrospective observational study.
ACS Med Chem Lett
January 2025
Usona Institute, Fitchburg, Wisconsin 53711-5300, United States.
This Patent Highlight explores recent innovations in neuroscience and neurotechnology, particularly in brain monitoring and stimulation. It examines four essential patents: novel psychoplastogens for neuronal growth, techniques for transferring emotional states, and advanced systems for self-guided neural diagnostics and treatment. The discussion extends to deep brain stimulation (DBS) for motor and memory disorders, enhanced brain function monitoring through electroencephalography (EEG), and the role of artificial intelligence in personalizing treatment strategies.
View Article and Find Full Text PDFInt J Lab Hematol
January 2025
Computer Vision Institute, College of Computer Science and Software, Shenzhen University, China.
Background: Acute lymphoblastic leukemia (ALL) is a leading cause of death among pediatric malignancies. Early diagnosis of ALL is crucial for minimizing misdiagnosis, improving survival rates, and ensuring the implementation of precise treatment plans for patients.
Methods: In this study, we propose a multi-modal deep neural network-based framework for early and efficient screening of ALL.
J Imaging Inform Med
January 2025
Department of Ophthalmology, The Affiliated Hospital of Guilin Medical University, Guilin, China.
Optical coherence tomography angiography (OCTA) is an emerging, non-invasive technique increasingly utilized for retinal vasculature imaging. Analysis of OCTA images can effectively diagnose retinal diseases, unfortunately, complex vascular structures within OCTA images possess significant challenges for automated segmentation. A novel, fully convolutional dense connected residual network is proposed to effectively segment the vascular regions within OCTA images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!