Using center of gravity to estimate the centroid of the spot in a Shack-Hartmann wavefront sensor, the measurement corrupts with photon and detector noise. Parameters, like window size, often require careful optimization to balance the noise error, dynamic range, and linearity of the response coefficient under different photon flux. It also needs to be substituted by the correlation method for extended sources. We propose a centroid estimator based on stream processing, where the center of gravity calculation window floats with the incoming pixel from the detector. In comparison with conventional methods, we show that the proposed estimator simplifies the choice of optimized parameters, provides a unit linear coefficient response, and reduces the influence of background and noise. It is shown that the stream-based centroid estimator also works well for limited size extended sources. A hardware implementation of the proposed estimator is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.006466 | DOI Listing |
Quantum backflow (QB), a counterintuitive interference phenomenon where particles with positive momentum can propagate backward, is important in applications involving light-matter interactions. To date, experimental demonstrations of backflow have been restricted to classical optical systems using techniques such as slit scanning or Shack-Hartmann wavefront sensing, which suffer from low spatial resolution due to the inherent limitations in slit width and lenslet array density. Here, we report an observation of azimuthal backflow (AB) both theoretically and experimentally by employing the weak measurement technique, which enables the precise extraction of photon momentum at each pixel.
View Article and Find Full Text PDFThe Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view.
View Article and Find Full Text PDFLight Sci Appl
December 2024
The State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
The Shack-Hartmann wavefront sensor (SHWFS) is critical in adaptive optics (AO) for measuring wavefronts via centroid shifts in sub-apertures. Under extreme conditions like strong turbulence or long-distance transmission, wavefront information degrades significantly, leading to undersampled slope data and severely reduced reconstruction accuracy. Conventional algorithms struggle in these scenarios, and existing neural network approaches are not sufficiently advanced.
View Article and Find Full Text PDFThe Shack-Hartmann wavefront sensor (SH-WS) is primarily used to detect the beam wavefront shape, which can be used to detect various perturbations in the atmospheric transmission of high-energy lasers. In this paper, we propose the use of spatial frequency to characterize the shape of the wavefront aberration based on the three-dimensional structure of the Zernike aberration. Based on the characteristics of the frequency distribution of the wavefront, we demonstrate a two-dimensional mixed-aperture diffractive lens wavefront sensor (MADL-WS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!