A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

General method of extreme surfaces for geometry optimization of the linear electro-optic effect on an example of LiNbO:MgO crystals. | LitMetric

A general method for determining the global maximum of the linear electro-optic effect in crystalline materials based on the construction and analysis of extreme surfaces obtained as a result of the optimization procedure is proposed. The electrically induced optical path length changes for ordinary and extraordinary waves as well as the optical path difference for orthogonally polarized waves were used as the objective functions in the optimization. The objective functions were determined for units of the electric field and crystal thickness in the light pass direction. In the example of LiNbO:MgO, it is shown that the maximal achievable given values of the optical path length change (global maxima) for ordinary and extraordinary waves are 119 pm/V and 277 pm/V, respectively. The global maximum of the optical path difference for orthogonally polarized waves is 269 pm/V (for 632.8 nm wavelength and at room temperature). These global maxima are exceeded by ∼1.5, 1.7, and 2.3 times the respective maximum values on direct cut crystals of LiNbO:MgO and are ∼5%, 9%, or 11% larger than the global maxima for undoped LiNbO crystal. This ensures a possibility to increase the energy efficiency by ∼2.9 or 5.3 times in the case of using of LiNbO:MgO crystals with optimal cuts as sensitive elements of electro-optic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.006255DOI Listing

Publication Analysis

Top Keywords

optical path
16
global maxima
12
general method
8
extreme surfaces
8
linear electro-optic
8
example linbomgo
8
linbomgo crystals
8
global maximum
8
path length
8
ordinary extraordinary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!