We propose a structure of a cascaded chirped narrow bandpass filter with a flat-top based on two-dimensional (2D) photonic crystals (PhCs). The filter discussed here consists of three filter units, each with a resonator and two reflectors. Coupled mode theory and transfer matrix method are methodologies applied in the analysis of the features. The calculations show that the bandwidth of the filter can be adjusted by changing the distances between resonators and reflectors, and based on this, a flat-top response can be achieved by chirped-cascading the filter units. According to the theoretical model, we design a narrow bandpass filter based on 2D PhCs with a triangular lattice of air holes, the parameters of which are calculated using the finite element method. The simulation results show that the filter has a center frequency of 193.40 THz, an insertion loss of 0.18 dB, a flat bandwidth of 40 GHz, and ripples of about 0.2 dB in the passband. The filter is suitable for dense-wavelength-division-multiplexed optical communication systems with 100 GHz channel spacing.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.004185DOI Listing

Publication Analysis

Top Keywords

narrow bandpass
12
bandpass filter
12
filter
9
cascaded chirped
8
chirped narrow
8
filter flat-top
8
flat-top based
8
based two-dimensional
8
two-dimensional photonic
8
photonic crystals
8

Similar Publications

Purpose: The aim of this study was to measure the effects of frequency spacing (i.e., F2 minus F1) on spectral integration for vowel perception in simulated bilateral electric-acoustic stimulation (BiEAS), electric-acoustic stimulation (EAS), and bimodal hearing.

View Article and Find Full Text PDF

Wide FOV metalens for near-infrared capsule endoscopy: advancing compact medical imaging.

Nanophotonics

November 2024

National Key Laboratory on Near-Surface Detection, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

This study presents the design, fabrication, and characterization of a wide field-of-view (FOV) metalens optimized for capsule endoscopy. The metalens achieved a 165° FOV with a high modulation transfer function (MTF) of 300 lines per millimeter (lp/mm) across the entire FOV, operating in the near-infrared (NIR) narrow-bandpass imaging at 940 nm. The performance of the metalens-based system is evaluated using two bandwidths, 12 nm and 32 nm, showing MTF values of 0.

View Article and Find Full Text PDF

Development of a DualEmission Laser-Induced Fluorescence (DELIF) Method for Long-Term Temperature Measurements.

Sensors (Basel)

November 2024

Department of Applied Physics, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan.

The fluorescence intensity of fluorescent dyes typically employed in the dual-emission laser-induced fluorescence (DELIF) method gradually degrades as the excitation time increases, and the degradation rate depends on the type of fluorescent dye used. Therefore, the DELIF method is unsuitable for long-term temperature measurements. In this study, we focused on the fluorescence intensity ratio of a single fluorescent dye at two fluorescence wavelengths and developed a DELIF method for long-term temperature measurements based on this ratio.

View Article and Find Full Text PDF

Frequency response measurement, or the forward transmission coefficient (S) measurement for a two-port network, is the key function of a vector network analyzer (VNA). In this paper, a broadband and high dynamic range (DR) microwave S parameter measurement scheme based on an optical phase-locked loop (OPLL) is proposed. By heterodyning two phase-locked hybrid integrated ultra-narrow linewidth lasers, a microwave signal with low phase noise and spurious level is generated as the incident signal and reference signal, and the signal frequency can be easily manipulated over a wide range by tuning the master laser wavelength.

View Article and Find Full Text PDF

We propose and demonstrate experimentally an electro-optic (EO) and thermo-optic (TO) tunable wavelength filter with band-rejection and band-pass dual-function. Our proposed filter is based on a long-period waveguide grating (LPWG) formed on a lithium niobate on insulator (LNOI) rib waveguide with a channel-shaped polymer cladding waveguide. The LPWG formed on the surface of the LNOI core enables efficient mode coupling between the two fundamental modes of the LNOI waveguide and the polymer cladding waveguide and hence dual-function filtering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!