Applications based on photonic crystal fibers depend strongly on their dispersion properties that might differ from the desired specifications due to deficiencies in the manufacturing process. Since dispersion characteristics might also be affected by the placement of the fiber, in this paper the effect of various placements on the chromatic dispersion properties of a commercially available HC-800-02 photonic crystal fiber was investigated between 760 and 870 nm with Fourier-transform spectral interferometry. To test the scaling of dispersion with fiber length, samples of different lengths ranging from 10 to 97 cm were used in the measurements. It was found that the dispersion properties of the orthogonal directions were different. The dispersion parameter showed small dependence on the placement and fiber length. The polarization-mode dispersion (PMD) of the fiber was measured using an indirect and a direct technique. To retrieve the PMD directly in the case of the shorter fibers where the fringes were too sparse for the Fourier method, the so-called minima-maxima method was employed. The precision was comparable with both techniques; however, the direct approach proved to be more accurate when longer samples were measured, and the indirect method seemed to be more reliable in the case of shorter fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.005369DOI Listing

Publication Analysis

Top Keywords

photonic crystal
12
dispersion properties
12
chromatic dispersion
8
crystal fiber
8
spectral interferometry
8
placement fiber
8
fiber length
8
measured indirect
8
case shorter
8
shorter fibers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!