Objective: The aims of this study were to analyze the maxillomandibular morphology of patients with mucopolysaccharidosis (MPS) type I, II, III, IVa and VI and to evaluate the craniofacial effect of hematopoietic stem cell transplantation (HCST) in MPS I.
Materials And Methods: One hundred head magnetic resonance images were retrospectively analyzed from 41 MPS and 27 control individuals. The width, height and length of the maxilla and mandible were plotted against age and the means of controls, MPS I, MPS II and MPS III were statistically compared. To determine the effect of HSCT in MPS I, jaw morphology was compared between MPS I patients with full donor chimerism versus patients with mixed/no donor chimerism.
Results: Maxillary dimensions were not statistically different between the MPS types. The height and length of the mandible were clearly smaller in MPS I as compared to those in controls, MPS II and MPS III. This was associated with progressive resorption of the mandibular condyles in MPS I, which was also observed in MPS II and VI, but not in MPS III or IVa. Whereas the success of HCST did not affect these changes, mandibular width was significantly smaller in MPS I individuals with full donor chimerism.
Conclusion: MPS I individuals have a smaller mandible as compared to control, MPS II and MPS III individuals due to progressive condylar degeneration. These abnormalities are also evident following successful HSCT.
Clinical Relevance: Clinicians should be aware of specific differences in mandibular morphology and condylar involvement among the MPS subtypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-017-2240-x | DOI Listing |
Front Toxicol
January 2025
Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
Plastics are globally considered a significant threat, particularly to metropolitan areas, due to the extensive use of plastic products. This research is the first of its kind to document microplastics contamination and its effects on Red wettled lapwing (Vanellus indicus). The concentration of microplastics (MPs) was measured from surface water at different locations including canals and drains, which are the primary sources of MPs pollution in the metropolitan city Lahore, Pakistan.
View Article and Find Full Text PDFDigit Discov
January 2025
Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh North Carolina 27606 USA
Plastic pollution, particularly microplastics (MPs), poses a significant global threat to ecosystems and human health, necessitating innovative remediation strategies. Biocompatible and biodegradable plastic-binding peptides (PBPs) offer a potential solution through targeted adsorption and subsequent MP detection or removal from the environment. A challenge in discovering plastic-binding peptides is the vast combinatorial space of possible peptides (, over 10 for 12-mer peptides), which far exceeds the sample sizes typically reachable by experiments or biophysics-based computational methods.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China. Electronic address:
Microplastics (MPs) have been found to interfere with the gut microbiota and compromise the integrity of the gut barrier. Excessive exposure to MPs markedly elevates the risk of cardiovascular disease, yet their influence on hypertension remains elusive, calling for investigation into their potential impacts on blood pressure (BP) regulation. In the present study, an increase in the concentration of MPs was observed in the fecal samples of individuals suffering from hypertension, as compared to the controls.
View Article and Find Full Text PDFEnviron Res
January 2025
Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Tommaso Fiorelli 1, 09126 Cagliari, Italy; Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain. Electronic address:
Microplastic (MP) pollution is a widespread and concerning environmental issue. The benthic layer is known as one of the major accumulation sinks, yet knowledge gaps still remain in describing the interactions of its biota with MPs. This work represents a comprehensive comparative analysis of MP ingestion in the four deep-sea crustacean decapods Aristeus antennatus (Risso, 1816), Aristaeomorpha foliacea (Risso, 1827), Nephrops norvegicus (Linnaeus, 1758) and Parapenaeus longirostris (Lucas, 1846) sampled from two distinct regions of the Mediterranean Sea in order to underscore the species-specific characteristics driving their MP ingestion variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!