Functional basis of the sexual dimorphism in the auditory fovea of the duetting bushcricket .

Proc Biol Sci

Institute of Cell Biology and Neuroscience, Goethe University, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany

Published: October 2017

From mammals to insects, acoustic communication is in many species crucial for successful reproduction. In the duetting bushcricket , the mutual acoustic communication between males and females is asymmetrical. We investigated how those signalling disparities are reflected by sexual dimorphism of their ears. Both sexes have tympanic ears in their forelegs, but male ears possess a significantly longer crista acustica containing 35% more scolopidia. With more sensory cells to cover a similar hearing range, the male hearing organ shows a significantly expanded auditory fovea that is tuned to the dominant frequency of the female reply to facilitate phonotactic mate finding. This sex-specific auditory fovea is demonstrated in the mechanical and neuronal responses along the tonotopically organized crista acustica by laservibrometric and electrophysiological frequency mapping, respectively. Morphometric analysis of the crista acustica revealed an interrupted gradient in organ height solely within this auditory fovea region, whereas all other anatomical parameters decrease continuously from proximal to distal. Combining behavioural, anatomical, biomechanical and neurophysiological information, we demonstrate evidence of a pronounced auditory fovea as a sex-specific adaptation of an insect hearing organ for intraspecific acoustic communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666096PMC
http://dx.doi.org/10.1098/rspb.2017.1426DOI Listing

Publication Analysis

Top Keywords

auditory fovea
20
acoustic communication
12
crista acustica
12
sexual dimorphism
8
duetting bushcricket
8
hearing organ
8
auditory
5
fovea
5
functional basis
4
basis sexual
4

Similar Publications

Frequency analysis by the cochlea forms a key foundation for all subsequent auditory processing. Stimulus-frequency otoacoustic emissions (SFOAEs) are a potentially powerful alternative to traditional behavioral experiments for estimating cochlear tuning without invasive testing, as is necessary in humans. Which methods accurately predict cochlear tuning remains controversial due to only a single animal study comparing SFOAE-based, behavioral, and cochlear frequency tuning in the same species.

View Article and Find Full Text PDF

Vocalization-induced middle ear muscle reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity after intense noise exposure in the CF-FM bat, Hipposideros pratti.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

August 2024

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.

Behaviors and auditory physiological responses of some species of echolocating bats remain unaffected after exposure to intense noise, but information on the underlying mechanisms remains limited. Here, we studied whether the vocalization-induced middle ear muscle (MEM) contractions (MEM reflex) and auditory fovea contributed to the unimpaired auditory sensitivity of constant frequency-frequency modulation (CF-FM) bats after exposure to broad-band intense noise. The vocalizations of the CF-FM bat, Hipposideros pratti, were inhibited through anesthesia to eliminate the vocalization-induced MEM reflex.

View Article and Find Full Text PDF

Otoacoustic emissions in African mole-rats.

Hear Res

April 2024

University of Groningen, University Medical Center Groningen, Department of Otorhinolaryngology/Head and Neck Surgery, Groningen, The Netherlands.

African mole-rats display highly derived hearing that is characterized by low sensitivity and a narrow auditory range restricted to low frequencies < 10 kHz. Recently, it has been suggested that two species of these rodents do not exhibit distortion product otoacoustic emissions (DPOAE), which was interpreted as evidence for a lack of cochlear amplification. If true, this would make them unique among mammals.

View Article and Find Full Text PDF

The role of neural oscillations in visuo-motor communication at the time of saccades.

Neuropsychologia

November 2023

Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50135, Florence, Italy; Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, via San Zeno 31, 56123, Pisa, Italy.

Saccadic eye-movements are fundamental for active vision, allowing observers to purposefully scan the environment with the high-resolution fovea. In this brief perspective we outline a series of experiments from our laboratories investigating the role of eye-movements and their consequences to active perception. We show that saccades lead to suppression of visual sensitivity at saccadic onset, and that this suppression is accompanied by endogenous neural oscillations in the delta range.

View Article and Find Full Text PDF

A sound-induced flash illusion (SiFI) is a multisensory illusion dominated by auditory stimuli, in which the individual perceives that the number of visual flashes is equal to the number of auditory stimuli when visual flashes are presented along with an unequal number of auditory stimuli. Although the mechanisms underlying fission and fusion illusions have been documented, there is not yet a consensus on how they vary according to the different eccentricities. In the present study, by incorporating the classic SiFI paradigm into four different eccentricities, we aimed to investigate whether the SiFI varies under the different eccentricities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!