During influenza A virus (IAV) infection, cytokine storms play a vital and critical role in clinical outcomes. We have previously reported that microRNA (miR)-302c regulates IAV-induced IFN expression by targeting the 3'-UTR of nuclear factor κB (NF-κB)-inducing kinase. In the current study, we found that miR-302a, another member of the miR-302 cluster, controls the IAV-induced cytokine storm. According to results from cell-based and knockout mouse models, IAV induces a cytokine storm via interferon regulatory factor-5 (IRF-5). We also found that IAV infection up-regulates IRF-5 expression and that IRF-5 in turn promotes IAV replication. Furthermore, we observed that IRF-5 is a direct target of miR-302a, which down-regulated IRF-5 expression by binding its 3'-UTR. Moreover, IAV increased IRF-5 expression by down-regulating miR-302a expression. Interestingly, miR-302a inhibited IAV replication. In IAV-infected patients, miR-302a expression was down-regulated, whereas IRF-5 expression was up-regulated. Taken together, our work uncovers and defines a signaling pathway implicated in an IAV-induced cytokine storm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766960 | PMC |
http://dx.doi.org/10.1074/jbc.M117.805937 | DOI Listing |
Viruses
January 2025
Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
In this narrative review, we explore the burden and risk factors of various herpesvirus infections in patients receiving chimeric antigen receptor T-cell (CAR-T) therapy or bispecific antibodies (BsAb) for the treatment of hematologic malignancies. Antiviral prophylaxis for herpes simplex/varicella zoster viruses became part of the standard of care in this patient population. Breakthrough infections may rarely occur, and the optimal duration of prophylaxis as well as the timing of recombinant zoster immunization remain to be explored.
View Article and Find Full Text PDFViruses
January 2025
Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
COVID-19, caused by SARS-CoV-2, has presented formidable challenges to global health since its emergence in late 2019. While primarily known for respiratory symptoms, it can also affect the ocular surface. This review summarizes the effects of SARS-CoV-2 on ocular surface immunity and inflammation, focusing on infection mechanisms, immune responses, and clinical manifestations.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
Thymoglobulin is used to prevent allograft rejection and is being explored at low doses as intervention immunotherapy in type 1 diabetes. Thymoglobulin consists of a diverse pool of rabbit antibodies directed against many different targets on human thymocytes that can also be expressed by other leukocytes. Since Thymoglobulin is generated by injecting rabbits with human thymocytes, this conceivably leads to differences between Thymoglobulin batches.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has profoundly impacted global health, with pneumonia emerging as a major complication in severe cases. The pathogenesis of COVID-19 is marked by the overproduction of reactive oxygen species (ROS) and an excessive inflammatory response, resulting in oxidative stress and significant tissue damage, particularly in the respiratory system. Antioxidants have garnered considerable attention for their potential role in managing COVID-19 pneumonia by mitigating oxidative stress and modulating immune responses.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Division of Stem Cell Transplant and Cellular Therapy, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA.
Chimeric antigen receptor T-cell (or CAR-T) therapy and bispecific antibodies (BsAbs) have revolutionized the treatment of hematologic malignancies, offering new options for relapsed or refractory cases. However, these therapies carry risks of early complications, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and delayed issues like graft-versus-host disease (GVHD), infections, and secondary cancers. Effective management requires early diagnosis using advanced biomarkers and imaging, along with prompt interventions involving immunosuppressants, corticosteroids, and cytokine inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!