AI Article Synopsis

  • The study investigates the role of the cryptochrome 1a (CRY1a) gene in mature tomato plants, highlighting its impact on growth and fruit production.
  • Cry1a mutants are taller and bear more fruits with lower biomass, while CRY1a-overexpressing plants are shorter, flower later, and produce fewer fruits.
  • The research finds that CRY1a influences hormone biosynthesis, DNA replication, and phytochemical levels, suggesting potential for improving agricultural traits through molecular manipulation of this gene.

Article Abstract

Blue light photoreceptors, cryptochromes (CRYs), regulate multiple aspects of plant growth and development. However, our knowledge of CRYs is predominantly based on model plant Arabidopsis at early growth stage. In this study, we elucidated functions of CRY1a gene in mature tomato (Solanum lycopersicum) plants by using cry1a mutants and CRY1a-overexpressing lines (OE-CRY1a-1 and OE-CRY1a-2). In comparison with wild-type plants, cry1a mutants are relatively tall, accumulate low biomass, and bear more fruits, whereas OE-CRY1a plants are short stature, and they not only flower lately but also bear less fruits. RNA-seq, qRT-PCR, and LC-MS/MS analysis revealed that biosynthesis of gibberellin, cytokinin, and jasmonic acid was down-regulated by CRY1a. Furthermore, DNA replication was drastically inhibited in leaves of OE-CRY1a lines, but promoted in cry1a mutants with concomitant changes in the expression of cell cycle genes. However, CRY1a positively regulated levels of soluble sugars, phytofluene, phytoene, lycopene, and ß-carotene in the fruits. The results indicate the important role of CRY1a in plant growth and have implications for molecular interventions of CRY1a aimed at improving agronomic traits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.13092DOI Listing

Publication Analysis

Top Keywords

cry1a mutants
12
plant growth
8
cry1a
8
plants cry1a
8
bear fruits
8
tomato cry1a
4
cry1a plays
4
plays critical
4
critical role
4
role regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!