Objectives: Kaplan-Meier survival analysis overestimates cumulative incidence in competing risks (CRs) settings. The extent of overestimation (or its clinical significance) has been questioned, and CRs methods are infrequently used. This meta-analysis compares the Kaplan-Meier method to the cumulative incidence function (CIF), a CRs method.
Study Design And Setting: We searched MEDLINE, EMBASE, BIOSIS Previews, Web of Science (1992-2016), and article bibliographies for studies estimating cumulative incidence using the Kaplan-Meier method and CIF. For studies with sufficient data, we calculated pooled risk ratios (RRs) comparing Kaplan-Meier and CIF estimates using DerSimonian and Laird random effects models. We performed stratified meta-analyses by clinical area, rate of CRs (CRs/events of interest), and follow-up time.
Results: Of 2,192 identified abstracts, we included 77 studies in the systematic review and meta-analyzed 55. The pooled RR demonstrated the Kaplan-Meier estimate was 1.41 [95% confidence interval (CI): 1.36, 1.47] times higher than the CIF. Overestimation was highest among studies with high rates of CRs [RR = 2.36 (95% CI: 1.79, 3.12)], studies related to hepatology [RR = 2.60 (95% CI: 2.12, 3.19)], and obstetrics and gynecology [RR = 1.84 (95% CI: 1.52, 2.23)].
Conclusion: The Kaplan-Meier method overestimated the cumulative incidence across 10 clinical areas. Using CRs methods will ensure accurate results inform clinical and policy decisions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jclinepi.2017.10.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!