Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662242 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0006009 | DOI Listing |
BMC Public Health
January 2025
Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.
Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.
Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.
Front Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFMed Vet Entomol
December 2024
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
Aedes albopictus (Skuse) and Aedes aegypti L. (Diptera: Culicidae) are invasive species known for their notable expansion capacity, which makes them relevant in the context of public health due to their role as vectors. In Argentina, these species coexist in a limited subtropical area in Northeastern part of the country.
View Article and Find Full Text PDFSci Rep
December 2024
National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
Dengue fever is a vector-borne, acute, febrile, and self-limiting systemic viral infection that affects tropical and subtropical regions, including Pakistan. Karachi has a significant burden of Aedes aegypti and Aedes albopictus due to suitable breeding sites, weather, and rapid and unplanned urbanization of squatter areas. The country has limited surveillance studies on circulating serotypes of the dengue virus and the patient's clinical features evolving over temporal changes.
View Article and Find Full Text PDFParasit Vectors
December 2024
Institut de Recherche Biomédicale des Armées (IRBA), Unité de Parasitologie et Entomologie, Marseille, France.
Background: The risk of mosquito-borne disease transmission is increasing in temperate climates with the colonization and proliferation of the Asian tiger mosquito vector Aedes albopictus and the rapid mass transport of passengers returning from tropical regions where viruses are endemic. The prevention of major Aedes-borne viruses heavily relies on the use of insecticides for vector control, mainly pyrethroids. In Europe, only deltamethrin is authorized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!