AI Article Synopsis

  • Mammalian tissues rely on circulating nutrients like glucose and lactate for energy.
  • Under aerobic conditions, glucose typically goes through the TCA cycle to produce energy, but it can also be converted to lactate anaerobically.
  • Findings show lactate can be a major energy source, surpassing glucose in circulation and significantly contributing to the TCA cycle in various tissues, especially during fasting and in certain cancers.

Article Abstract

Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898814PMC
http://dx.doi.org/10.1038/nature24057DOI Listing

Publication Analysis

Top Keywords

tca cycle
24
circulating lactate
16
lactate
10
glucose
8
tca
8
tissues tumours
8
lactate primary
8
exceeds glucose
8
fasted mice
8
cycle intermediates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!