We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li-S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li-S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)-LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b11566 | DOI Listing |
Chem Commun (Camb)
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction.
View Article and Find Full Text PDFChemSusChem
January 2025
Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.
Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.
View Article and Find Full Text PDFNat Commun
January 2025
Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.
Aqueous zinc ion batteries exhibit great prospects due to their low cost and high safety, while their lifespan is limited by severe dendritic growth problems. Herein, we develop an anti-dendrite hot-pressing separator interlayer through a mass-producible hot-pressing strategy, by spreading metal-organic framework (MOF) precursor on nonwoven matrix followed by a simple hot-pressing process. The in situ modification of MOF crystals on fiber surface processes abundant nitrogenous functional groups and high specific surface area (190.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Wenzhou University, College of Chemistry and Materials Engineering, Chashan University Town, 325035, Wenzhou, CHINA.
J Colloid Interface Sci
December 2024
Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450003, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!