Variation in crocodilian dorsal scute organization and geometry with a discussion of possible functional implications.

J Morphol

Department of Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, U.S.A.

Published: February 2018

AI Article Synopsis

Article Abstract

Dermal ossifications, including osteoderms, are present in many vertebrates and are frequently interpreted as a defense against predators. Nevertheless, osteoderms remain ubiquitous in adult crocodilians while being absent in hatchlings, even though adults rarely experience predation. In other biological systems, increased variation, particularly fluctuating asymmetry, have proven useful for identifying biological structures likely to have evolved under relaxed selection, which in turn may inform their function. Therefore, using the keratinous scutes as proxies for the underlying osteoderm morphology, I investigated the average intraspecific variability of geometry and fluctuating asymmetry in dorsal scutes in five species of crocodilians. I first tested for differences in variability of scute length and width, then for differences in bilateral fluctuating asymmetry of scute number, before finally investigating scute distribution patterns for each species compared to hypothetical rectangular and hexagonal scute arrangements. The American crocodile, Crocodylus acutus, shows significantly more asymmetry than other species, which is consistent with relaxed selection on osteoderms in this species. A suspected decrease in intraspecific aggression within Crocodylus acutus, in conjunction with the inferred relaxed selection, suggests that, in general, crocodilian osteoderms function primarily as defensive armor in aggressive encounters with conspecifics. The smooth-fronted caiman, Paleosuchus trigonatus, exhibits increased variation in scute dimensions linked to the mediolateral offset of osteoderms in adjacent rows, possibly resulting in a more rigid carapace. Unfortunately, comparative data on crocodilian behavior, physiology, and development is extremely limited and restricts the ability to explore other potential explanations for the patterns observed, highlighting the need for more research on rare and cryptic crocodylians.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.20760DOI Listing

Publication Analysis

Top Keywords

fluctuating asymmetry
12
relaxed selection
12
increased variation
8
crocodylus acutus
8
scute
6
osteoderms
5
variation crocodilian
4
crocodilian dorsal
4
dorsal scute
4
scute organization
4

Similar Publications

Sound detection in fishes relies on the inner ear and peripheral structures, such as calcareous otoliths, which play a crucial role in perceiving movement, orientation, and balance. Otoliths, in particular, respond to various environmental factors including temperature, salinity, and food availability, making them valuable indicators of ecological conditions. This study applies geometric morphometrics (GMM) to analyze the otolith shape of Diplodus annularis (Linnaeus, 1758) from two distinct populations located in the Gulf of Asinara (Porto Torres, Sardinia) and the northern Adriatic Sea (Le Tegnue).

View Article and Find Full Text PDF

Habitat fragmentation increases the risk of local extinction of small reptiles: A case study on Phrynocephalus przewalskii.

Ecotoxicol Environ Saf

January 2025

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Habitat fragmentation represents a multifaceted global conservation threat, exerting both direct and indirect effects on individual animals and communities. Reptiles, particularly smaller species with limited migratory abilities, are especially vulnerable to these changes. This study examines how small reptiles adapt their life history strategies in fragmented habitats and determines whether their responses are primarily due to phenotypic plasticity or genetic adaptation.

View Article and Find Full Text PDF

Environmental stress differentially affects phenotypic modularity and fluctuating asymmetry in generalist and specialist cactophilic Drosophila.

J Evol Biol

January 2025

Laboratorio de Ecotono, Instituto de Investigaciones em Biodiversidad y Medioambiente (INIBIOMA), CONICET- Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina.

Modularity and developmental (in)stability have the potential to influence phenotype production and, consequently, the evolutionary trajectories of species. Depending on the environmental factors involved and the buffering capacity of an organism, different developmental outcomes are expected. Cactophilic Drosophila species provide an established eco-evolutionary model with well-studied ecological conditions, making them ideal for studying these phenomena.

View Article and Find Full Text PDF

To investigate the dynamic complexity of chain-to-chain output decisions in a closed-loop supply chain system of cross-border e-commerce (CBEC), this study decomposes the system into four product-market (PM) chains, based on the e-commerce platform's information-sharing strategy and the manufacturer's selected logistics mode (direct mail or bonded warehouse). By combining game theory with complex systems theory, discrete dynamic models for output competition among PM chains under four scenarios are constructed. The Nash equilibrium solution and stability conditions of the models are derived according to the principles of nonlinear dynamics.

View Article and Find Full Text PDF

Multifractal dynamic changes of spontaneous brain activity in psychiatric disorders: Adult attention deficit-hyperactivity disorder, bipolar disorder, and schizophrenia.

J Affect Disord

January 2025

School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. Electronic address:

It is one of the strategies to study the complexity of spontaneous fluctuation of brain neurons based on resting-state functional magnetic resonance imaging (rs-fMRI), but the multifractal characteristics of spontaneous fluctuation of brain neurons in psychiatric diseases need to be studied. Therefore, this paper will study the multifractal spontaneous brain activity changes in psychiatric disorders using the multifractal detrended fluctuation analysis algorithm based on the UCLA datasets. Specifically: (1) multifractal characteristics in adult attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BP), and schizophrenia (SCHZ); (2) the source of those multifractal characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!