AI Article Synopsis

  • Sustainable food systems are crucial for planetary health, helping to reduce infectious disease risks, lessen environmental impacts, and improve nutrition.
  • Rising human populations and changing diets are driving up food demand and meat consumption while available agricultural land and water are decreasing.
  • Increasing livestock production can harm the environment and public health, requiring tailored interventions to enhance nutrition and reduce disease risks.

Article Abstract

Sustainable food systems are an important component of a planetary health strategy to reduce the threat of infectious disease, minimize environmental footprint and promote nutrition. Human population trends and dietary transition have led to growing demand for food and increasing production and consumption of meat, amid declining availability of arable land and water. The intensification of livestock production has serious environmental and infectious disease impacts. Land clearing for agriculture alters ecosystems, increases human-wildlife interactions and leads to disease proliferation. Context-specific interventions should be evaluated towards optimizing nutrition resilience, minimizing environmental footprint and reducing animal and human disease risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5914329PMC
http://dx.doi.org/10.1093/trstmh/trx038DOI Listing

Publication Analysis

Top Keywords

sustainable food
8
food systems
8
planetary health
8
infectious disease
8
environmental footprint
8
systems optimal
4
optimal planetary
4
health sustainable
4
systems component
4
component planetary
4

Similar Publications

Background: The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients.

Methods: Thirty participants with T2DM were recruited for this within-subject experimental study.

View Article and Find Full Text PDF

The aim of this study is based on the searching of "new" potential environmentally friendly plant based products with herbicidal activity. The purpose of the study is also to find the source which is easy to harvest in high amount within the local environment. Salvia pratensis L.

View Article and Find Full Text PDF

Degrowth as a plausible pathway for food systems transformation.

Nat Food

January 2025

Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.

Food systems require urgent transformation towards social and ecological sustainability. Degrowth posits a radical pathway of transformation to reduce ecological impacts while increasing well-being and reducing inequality. Here we highlight that degrowth and food systems-albeit both linked to transformation-are not well integrated.

View Article and Find Full Text PDF

Agricultural subsoil microbiomes and functions exhibit lower resistance to global change than topsoils in Chinese agroecosystems.

Nat Food

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, People's Republic of China.

Soils play a critical role in supporting agricultural production. Subsoils, below 20 cm, underpin fundamental agroecosystem sustainability traits including soil carbon storage, climate regulation and water provision. However, little is known about the ecological stability of subsoils in response to global change.

View Article and Find Full Text PDF

Variation in a single allele drives divergent yield responses to elevated CO between rice subspecies.

Nat Commun

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.

Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!