Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the animal microbiome, localization of microbes to specific cell types is well established, but there are few such examples within the plant microbiome which includes endophytes. Endophytes are non-pathogenic microbes that inhabit plants. Root hairs are single cells, equivalent to the nutrient-absorbing intestinal microvilli of animals, used by plants to increase the root surface area for nutrient extraction from soil including phosphorus (P). There has been significant interest in the microbiome of intestinal microvilli but less is known about the root hair microbiome. Here we describe a bacterial endophyte (3F11) from Zea nicaraguensis, a wild corn discovered in a Nicaraguan swamp above rock-P lava flowing from the San Cristobal volcano. Rock-P is insoluble and a major challenge for plants. Following seed coating and germination on insoluble-P, the endophyte colonized epidermal surfaces, ultimately colonizing root hairs intracellularly. The endophyte promoted root hair growth and secreted acids to solubilize rock-P for uptake by a larger root hair surface. The most interesting observation was that a seed-coated endophyte targeted and colonized a critical cell type, root hair cells, consistent with earlier studies. The endophyte maintained its targeting ability in two evolutionary divergent hosts, suggesting that the host recognition machinery is conserved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647395 | PMC |
http://dx.doi.org/10.1038/s41598-017-14080-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!