We carried out dynamic force manipulations in silico on a variety of coiled-coil protein fragments from myosin, chemotaxis receptor, vimentin, fibrin, and phenylalanine zippers that vary in size and topology of their α-helical packing. When stretched along the superhelical axis, all superhelices show elastic, plastic, and inelastic elongation regimes and undergo a dynamic transition from the α-helices to the β-sheets, which marks the onset of plastic deformation. Using the Abeyaratne-Knowles formulation of phase transitions, we developed a new theoretical methodology to model mechanical and kinetic properties of protein coiled-coils under mechanical nonequilibrium conditions and to map out their energy landscapes. The theory was successfully validated by comparing the simulated and theoretical force-strain spectra. We derived the scaling laws for the elastic force and the force for α-to-β transition, which can be used to understand natural proteins' properties as well as to rationally design novel biomaterials of required mechanical strength with desired balance between stiffness and plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b06883DOI Listing

Publication Analysis

Top Keywords

dynamic transition
8
transition α-helices
8
α-helices β-sheets
8
β-sheets polypeptide
4
polypeptide coiled-coil
4
coiled-coil motifs
4
motifs carried
4
carried dynamic
4
dynamic force
4
force manipulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!