AI Article Synopsis

  • Repetitive DNA sequences, especially trinucleotide repeats, can lead to various hereditary disorders in humans due to their instability.
  • This study presents a new method to analyze the instability of these triplet repeats using yeast as a model organism.
  • The researchers utilize a fluctuation assay combined with a software called FluCalc to measure the rates of repeat expansions and associated genetic mutations.

Article Abstract

Instability of repetitive DNA sequences causes numerous hereditary disorders in humans, the majority of which are associated with trinucleotide repeat expansions. Here, we describe a unique system to study instability of triplet repeats in a yeast experimental setting. Using fluctuation assay and the novel program FluCalc we are able to accurately estimate the rates of large-scale expansions, as well as repeat-mediated mutagenesis and gross chromosomal rearrangements for different repeat sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5741187PMC
http://dx.doi.org/10.1007/978-1-4939-7306-4_29DOI Listing

Publication Analysis

Top Keywords

yeast experimental
8
quantitative analysis
4
analysis rates
4
rates repeat-mediated
4
repeat-mediated genome
4
genome instability
4
instability yeast
4
experimental system
4
system instability
4
instability repetitive
4

Similar Publications

Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc.

View Article and Find Full Text PDF

Imaging-Based Quantitative Assessment of Biomolecular Condensates in vitro and in Cells.

J Biol Chem

December 2024

European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Electronic address:

The formation of biomolecular condensates contributes to intracellular compartmentalization, and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains.

View Article and Find Full Text PDF

Introduction: Fungi, including , may be a trigger or exacerbate psoriasis, especially in difficult to treat (DTT) areas, through the activation of IL-17/23 axis.

Methods: In this study, seventy patients with DDT psoriasis were enrolled to evaluate species and/or other opportunistic fungi colonization rate at baseline (T0) and the impact of apremilast on fungal load, clinical outcome, serum cytokine levels and biochemical serum profile of patients after 16, 24 and 52 weeks of treatment.

Results: In our population, 33 (47%) patients were colonized by spp.

View Article and Find Full Text PDF

The kingdom of fungi contains highly diverse species. However, fundamental processes sustaining life such as RNA metabolism are much less comparatively studied in Fungi than in other kingdoms. A key factor in the regulation of mRNA expression is the cap-binding protein eIF4E, which plays roles in mRNA nuclear export, storage and translation.

View Article and Find Full Text PDF

The current study was designed to investigate the effect of A. indica (Neem) leaf extracts (ethanolic and aqueous) in yeast-induced pyrexia and acetic acid-induced writhing in rat models to evaluate the antipyretic and analgesic biomarkers and its phytochemical screening with computational analysis. For the antipyretic activity model 60 albino rats (160-200g) of either sex were divided into 4 groups and all groups were injected with yeast to induce pyrexia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!