A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secreted proteins produced by fungi associated with Botryosphaeria dieback trigger distinct defense responses in Vitis vinifera and Vitis rupestris cells. | LitMetric

Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-017-1175-zDOI Listing

Publication Analysis

Top Keywords

botryosphaeria dieback
20
defense responses
20
secreted proteins
8
proteins produced
8
vitis vinifera
8
vitis rupestris
8
suspension cells
8
vinifera gewurztraminer
8
extracellular medium
8
rupestris compared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!