Cyanamide as a prebiotic phosphate activating agent - catalysis by simple 2-oxoacid salts.

Chem Commun (Camb)

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, UK.

Published: October 2017

Cyanamide is a prebiotically plausible compound that has previously been invoked as a phosphate activating agent. However, its reactions with phosphate monoesters are very slow and tend to be low yielding. We now report a fast and efficient phosphate activation reaction using cyanamide in the presence of glyoxylate or pyruvate. These simple 2-oxoacid salts are shown to function as catalysts and in an optimised system, adenosine-3'-phosphate was converted to adenosine-2',3'-cyclic phosphate in 95% yield.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5708344PMC
http://dx.doi.org/10.1039/c7cc07517kDOI Listing

Publication Analysis

Top Keywords

phosphate activating
8
activating agent
8
simple 2-oxoacid
8
2-oxoacid salts
8
phosphate
5
cyanamide prebiotic
4
prebiotic phosphate
4
agent catalysis
4
catalysis simple
4
salts cyanamide
4

Similar Publications

Metabolomics combined with physiology and transcriptomics reveal the regulation of key nitrogen metabolic pathways in alfalfa by foliar spraying with nano-selenium.

J Nanobiotechnology

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.

Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.

View Article and Find Full Text PDF

D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint.

J Hematol Oncol

January 2025

Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.

Background: Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism.

Methods: The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting.

View Article and Find Full Text PDF

Despite their potential risks to human health and the environment at ng/L to μg/L concentrations, there has been relatively little effort to measure trace organic compounds (TOrCs) in surface waters of Central America. The concentrations of eighteen TOrCs detected at eleven surface water sites in the Lempa River basin of El Salvador and four sources of drinking water for the cities of San Salvador, Antiguo Cuscatlán, Soyapango, and Santa Tecla are reported here. All samples were analyzed via liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Dual-template epitope imprinted nanoparticles for anti-glycolytic tumor-targeted treatment.

J Colloid Interface Sci

December 2024

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. Electronic address:

Glycolysis provides tumors with abundant nutrients through glucose (Glu) metabolism. As a therapeutic target, precise targeting and effective inhibition of the glycolysis process remains a major challenge in anti-metabolic therapy. In this study, a novel dual-template molecularly imprinted polymer (D-MIP), capable of specifically recognizing glucose transporter member 1 (GLUT1) and hexokinase-2 (HK2) was prepared for anti-glycolytic tumor therapy.

View Article and Find Full Text PDF

ATP Regeneration from Pyruvate in the PURE System.

ACS Synth Biol

January 2025

Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K.

The "Protein synthesis Using Recombinant Elements" ("PURE") system is a minimal biochemical system capable of carrying out cell-free protein synthesis using defined enzymatic components. This study extends PURE by integrating an ATP regeneration system based on pyruvate oxidase, acetate kinase, and catalase. The new pathway generates acetyl phosphate from pyruvate, phosphate, and oxygen, which is used to rephosphorylate ATP .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!