Catalytic decomposition of ethylene glycol on the Pt cluster was studied as a model system for hydrogen production from a lignocellulosic material. Ethylene glycol was chosen as a starting material because of two reasons, it is the smallest oxygenate with a 1 : 1 carbon to oxygen ratio and it contains the C-H, O-H, C-C, and C-O bonds also present in biomass. Density functional theory calculations were employed for predictions of reaction pathways for C-H, O-H, C-C and C-O cleavages, and Brønsted-Evans-Polanyi relationships were established between the final state and the transition state for all mechanisms. The results show that Pt catalyzes the cleavage reactions of ethylene glycol more favourably than a Pt surface. The flexibility of Pt clusters during the reactions is the key factor in reducing the activation barrier. Overall, the results demonstrate that ethylene glycol and thus biomass can be efficiently converted into hydrogen using platinum nanoclusters as catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp04485bDOI Listing

Publication Analysis

Top Keywords

ethylene glycol
20
platinum nanoclusters
8
catalytic decomposition
8
decomposition ethylene
8
c-h o-h
8
o-h c-c
8
c-c c-o
8
ethylene
5
glycol
5
geometrical flexibility
4

Similar Publications

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

Nanoscale metals have emerged as crucial materials for conductive inks in printed electronics due to their unique physical and chemical properties. However, the synthesis of high-precision and highly conductive copper ink remains a challenge. Herein, a high-precision, highly conductive, and oxidation-resistant nanocopper ink was synthesized to fabricate highly conductive and flexible printed electronic devices.

View Article and Find Full Text PDF

Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases.

View Article and Find Full Text PDF

Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.

View Article and Find Full Text PDF

Adequate hypothermic storage of human mesenchymal stem cells (hMSCs) is of fundamental importance since they have been explored in several regenerative medicine initiatives. However, the actual clinical application of hMSCs necessitates hypothermic storage for long periods, a process that requires the use of non-toxic and efficient cryo-reagents capable of maintaining high viability and differentiating properties after thawing. Current cryopreservation methods are based on cryoprotectant agents (CPAs) containing dimethylsulphoxide (DMSO), which have been shown to be toxic for clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!