A metal-free three component cyclization reaction with amidation is devised for direct synthesis of DFT-designed amido-phenazine derivative bearing noncovalent gluing interactions to fabricate organic nanomaterials. Composition-dependent organic nanoelectronics for nonvolatile memory devices are discovered using mixed phenazine-stearic acid (SA) nanomaterials. We discovered simultaneous two different types of nonmagnetic and non-moisture sensitive switching resistance properties of fabricated devices utilizing mixed organic nanomaterials: (a) sample-1(8:SA = 1:3) is initially off, turning on at a threshold, but it does not turn off again with the application of any voltage, and (b) sample-2 (8:SA = 3:1) is initially off, turning on at a sharp threshold and off again by reversing the polarity. No negative differential resistance is observed in either type. These samples have different device implementations: sample-1 is attractive for write-once-read-many-times memory devices, such as novel non-editable database, archival memory, electronic voting, radio frequency identification, sample-2 is useful for resistive-switching random access memory application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645374 | PMC |
http://dx.doi.org/10.1038/s41598-017-13754-w | DOI Listing |
J Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Development Adaptation Handicap (DevAH) Research Unit, Université de Lorraine, 54000 Nancy, France.
Analyzing performance in rowing, e.g., analyzing force and power output profiles produced either on ergometer or on boat, is a priority for trainers and athletes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, Tunghai University, Taichung City 407224, Taiwan.
This paper addresses the increasing demand for efficient and scalable streaming service applications within the context of edge computing, utilizing NVIDIA Jetson Xavier NX hardware and Docker. The study evaluates the performance of DeepStream and Simple Realtime Server, demonstrating that containerized applications can achieve performance levels comparable to traditional physical machines. The results indicate that WebRTC provides superior low-latency capabilities, achieving delays of around 5 s, while HLS typically experiences delays exceeding 10 s.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China.
Materials (Basel)
December 2024
School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Phase-change random access memory (PcRAM) faces significant challenges due to the inherent instability of amorphous GeSbTe (GST). While doping has emerged as an effective method for amorphous stabilization, understanding the precise mechanisms of structural modification and their impact on material stability remains a critical challenge. This study provides a comprehensive investigation of elastic strain and stress in crystalline lattices induced by various dopants (C, N, and Al) through systematic measurements of film thickness changes during crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!