Recently, a magnetic protein was discovered, and a multimeric magnetosensing complex was validated, which may form the basis of magnetoreception. In this study, the magnetic protein was firstly used in biotechnology application, and a novel convenient one-step purification and immobilization method was established. A universal vector and three linker patterns were developed for fusion expression of magnetic protein and target protein. The magnetic protein was absorbed by iron beads, followed by target protein aggregation, purification, and immobilization. GFP, employed as a reporter protein, was successfully purified from cell lysate. Subsequently, three enzymes (lipase, α-L-arabinofuranosidase, pullulanase) with different molecular sizes testified the versatility of this magnetic-based approach. The specific activities of the purified enzymes were distinctly higher than those of the traditionally purified enzymes using affinity chromatography. The lipase immobilized on iron beads presented improved thermostability and enhanced pH tolerance compared to the free enzyme. The immobilized lipase could be easily recovered and reused for maximum utilization. After 20 cycles of reutilization, the magnetically immobilized lipase retained 71% of its initial activity. This investigation may help introduce magnetic protein into biotechnology applications, and the one-step purification and immobilization method may serve to illustrate an economically viable process for industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645317PMC
http://dx.doi.org/10.1038/s41598-017-13648-xDOI Listing

Publication Analysis

Top Keywords

magnetic protein
24
purification immobilization
16
one-step purification
12
protein
9
convenient one-step
8
immobilization method
8
target protein
8
iron beads
8
purified enzymes
8
immobilized lipase
8

Similar Publications

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing.

View Article and Find Full Text PDF

Angiomotins (Amots) are a family of adaptor proteins with important roles in cell growth, migration, and proliferation. The Amot coiled-coil homology (ACCH) domain has a high affinity for non-phosphorylated and mono-phosphorylated phosphatidylinositol which provides specificity in the membrane association. The membrane specificity is linked with targeting and recycling of the membrane protein to maintain normal cell phenotypes and function.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).

View Article and Find Full Text PDF

Selective In Situ Analysis of Hepatogenic Exosomal microRNAs via Virus-Mimicking Multifunctional Magnetic Vesicles.

Adv Healthc Mater

January 2025

The Institute of Chinese Medicine of Nanjing University, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing University Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.

Drug-induced liver injury (DILI) is a common clinical problem with urgent respect to demanding early diagnosis. Exosomal miRNAs are reliable and noninvasive biomarkers for the early diagnosis of DILI. However, accurate and feasible detection of exosomal miRNAs is often hampered by the low abundance of miRNAs, inefficient exosome separation techniques, and the requirement for RNA extraction from large sample volumes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!