Myeloproliferative neoplasms (MPNs) often carry JAK2(V617F), MPL(W515L), or CALR(del52) mutations. Current treatment options for MPNs include cytoreduction by hydroxyurea and JAK1/2 inhibition by ruxolitinib, both of which are not curative. We show here that cell lines expressing JAK2(V617F), MPL(W515L), or CALR(del52) accumulated reactive oxygen species-induced DNA double-strand breaks (DSBs) and were modestly sensitive to poly-ADP-ribose polymerase (PARP) inhibitors olaparib and BMN673. At the same time, primary MPN cell samples from individual patients displayed a high degree of variability in sensitivity to these drugs. Ruxolitinib inhibited 2 major DSB repair mechanisms, BRCA-mediated homologous recombination and DNA-dependent protein kinase-mediated nonhomologous end-joining, and, when combined with olaparib, caused abundant accumulation of toxic DSBs resulting in enhanced elimination of MPN primary cells, including the disease-initiating cells from the majority of patients. Moreover, the combination of BMN673, ruxolitinib, and hydroxyurea was highly effective in vivo against JAK2(V617F) murine MPN-like disease and also against JAK2(V617F), CALR(del52), and MPL(W515L) primary MPN xenografts. In conclusion, we postulate that ruxolitinib-induced deficiencies in DSB repair pathways sensitized MPN cells to synthetic lethality triggered by PARP inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746670PMC
http://dx.doi.org/10.1182/blood-2017-05-784942DOI Listing

Publication Analysis

Top Keywords

parp inhibitors
12
myeloproliferative neoplasms
8
jak2v617f mplw515l
8
mplw515l calrdel52
8
primary mpn
8
dsb repair
8
ruxolitinib-induced defects
4
defects dna
4
dna repair
4
repair sensitivity
4

Similar Publications

Purpose: Developmentally regulated GTP-binding protein 2 (DRG2) regulates microtubule dynamics and G2/M arrest during docetaxel treatment. Poly ADP-ribose polymerase (PARP) acts as an important repair system for DNA damage caused by docetaxel treatment. This study investigated whether DRG2 expression affects response to PARP inhibitors (olaparib) using prostate cancer cell lines PC3, DU145, LNCaP-FGC, and LNCaP-LN3.

View Article and Find Full Text PDF

A pan-tumor review of the role of poly(adenosine diphosphate ribose) polymerase inhibitors.

CA Cancer J Clin

January 2025

Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.

Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.

View Article and Find Full Text PDF

Design, Synthesis, and Pharmacodynamic Evaluation of Highly Selective PARP1 Inhibitors with Brain Penetrance.

J Med Chem

January 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Purpose: This study focused on combining irinotecan with Poly (ADP-ribose) polymerase (PARP) inhibitors to explore the potential for novel combination therapeutics in small cell lung cancer (SCLC).

Materials And Methods: We selected 10 different SCLC cell lines with diverse mutational backgrounds in DNA damage response (DDR) pathway genes to evaluate the efficacy of the combination of three PARP inhibitors and irinotecan. After the cells were exposed to the drugs for seven days, cell viability was measured, and a combination index was calculated.

View Article and Find Full Text PDF

Overview of the epigenetic/cytotoxic dual-target inhibitors for cancer therapy.

Eur J Med Chem

January 2025

School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China. Electronic address:

Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!