In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats.

Chem Biol Interact

Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS University, Mumbai 400056, Maharashtra, India. Electronic address:

Published: December 2017

Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (C) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), C was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA-X with CYP2C9. PK parameters of AMLO were not significantly affected by pre-treatment of EL. Thereby our findings indicate that co-administration of GS with drugs that are metabolized by CYP2C9 and CYP1A2 could lead to potential HDI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2017.10.015DOI Listing

Publication Analysis

Top Keywords

vivo pharmacokinetic
8
pharmacokinetic interaction
8
ethanolic extract
8
gymnema sylvestre
8
low high
8
interaction
4
interaction ethanolic
4
extract gymnema
4
sylvestre cyp2c9
4
cyp2c9 tolbutamide
4

Similar Publications

GPR119 has emerged as a promising target for treating type 2 diabetes and associated obesity, as its stimulation induces the secretion of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide in the intestinal tract as well as the glucose-dependent release of insulin in pancreatic β-cells. We describe the design and synthesis of novel GPR119 agonists containing a 1,4-disubstituted cyclohexene scaffold. Compound displayed nanomolar potency (EC = 3.

View Article and Find Full Text PDF

A Comparative Study of the In Vitro Intestinal Permeability of Pinnatoxins and Portimine.

Mar Drugs

January 2025

Toxicology of Contaminants Unit, Fougères Laboratory, ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 35306 Fougères, France.

The pinnatoxins (PnTXs) and portimines, produced by , have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h.

View Article and Find Full Text PDF

L. is a plant with various claims of ethnobotanical use, primarily for inflammatory diseases. Chemical studies have already isolated different types of terpenes from the species, and studies have established its pharmacological potential.

View Article and Find Full Text PDF

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Background: Antibody-drug conjugate (ADC) is an anticancer drug that links toxins to specifically targeted antibodies via linkers, offering the advantages of high target specificity and high cytotoxicity. However, complexity of its structural composition poses a greater difficulty for drug design studies.

Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) based consideration of ADCs has increasingly become a hot research topic for optimal drug design in recent years, providing possible ideas for obtaining ADCs with desirable properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!