Thymopentin (TP5) is commonly used in the treatment for autoimmune diseases, with a short plasma half-life (30s) and a long treatment period (7 days to 6 months). It is usually administrated by syringe injection, resulting in compromised patient compliance. Dissolving microneedle array (DMNA) offers a superior approach for transdermal delivery of biological macromolecules, as it allows painless penetration through the stratum corneum and generates minimal biohazardous waste after dissolving in the skin. Despite recent advances in DMNA as a novel approach for transdermal drug delivery, problem of insufficient mechanical strength remains to be solved. In this study, TP5-loaded DMNA (TP5-DMNA) was uniquely developed using a modified two-step molding technology. The higher mechanical strength was furnished by employing bovine serum albumin (BSA) as a co-material to fabricate the needles. The obtained TP5-DMNA containing BSA displayed better skin penetration and higher drug loading efficiency than that without BSA. The in vivo pharmacodynamics study demonstrated that TP5-DMNA had comparative effect on immunomodulation to intravenous injection of TP5, in terms of ameliorating the CD4+/CD8+ ratio, SOD activity and MDA value to the basal level. Only mild irritation was observed at the site of administration. These results suggest that the novel TP5-DMNA utilizing BSA provides an alternative approach for convenient and safe transdermal delivery of TP5, which is a promising administration strategy for future clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2017.10.011DOI Listing

Publication Analysis

Top Keywords

dissolving microneedle
8
microneedle array
8
modified two-step
8
two-step molding
8
molding technology
8
approach transdermal
8
transdermal delivery
8
mechanical strength
8
novel strategy
4
strategy immunomodulation
4

Similar Publications

Traditional mRNA vaccine formulation loaded by lipid nanoparticle (mRNA-LNP) has several shortcomings in clinical application, including the need for cryopreservation, discomfort associated with intramuscular injections, and the risk of liver aggregation. Dissolvable microneedles (DMNs), as a novel transdermal drug delivery platform, can overcome the skin barrier to deliver drugs directly into the skin in a minimally invasive manner. However, mRNA-LNP is unstable and easily degraded during the solidification of DMN.

View Article and Find Full Text PDF

The utilization of dissolvable microneedles (MNs) is a promising and cutting-edge approach to drug delivery for the treatment of psoriasis, an autoimmune skin disorder characterized by the appearance of red, scaly patches on the skin. This study presents the development of a dissolving MN patch made of polyvinylpyrrolidone for the purpose of delivering Clobetasol 17-Propionate through the skin. The MN patches were evaluated for their physical characteristics, including morphology, solubility, strength, and ability to penetrate the skin.

View Article and Find Full Text PDF

Facile minocycline deployment in gingiva using a dissolvable microneedle patch for the adjunctive treatment of periodontal disease.

Bioeng Transl Med

March 2025

School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital Hangzhou Zhejiang China.

Minocycline is a commonly used drug for adjunctive therapy in periodontal disease. However, the current mainstream local medications primarily rely on intra-pocket administration, which, while avoiding the side effects of traditional systemic drugs, presents challenges such as inconvenience, discomfort, and the need for professional assistance, thus affecting patient compliance. Herein, we introduce a minocycline-loaded dissolvable microneedle (Mino-DMN) patch that allows for local and efficient delivery of minocycline to gingiva for the treatment of periodontitis.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease. In the clinical treatment of RA, the anti-rheumatoid drug sinomenine hydrochloride (SIN) was administered as tablets or injections. It has low oral bioavailability, dose-dependent adverse reactions, poor patient compliance with injections, and fails to resolve patients' early pain problems.

View Article and Find Full Text PDF

Dissolving microneedles (MNs) are promising transdermal drug delivery systems that can effectively increase the absorption of the drugs. They bypass the first layer of the skin, the stratum corneum (SC) and deliver the drugs directly into the dermis, by dissolving inside the interstitial fluid and releasing the active. The traditional ways of MN fabrication involve primarily micromolding, which basically uses silicone molds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!