Identification of parasite antigens targeted by immune effector mechanisms that confer protection against malaria is important for the design of a multi-component malaria vaccine. Here, the association of antibodies reacting with the Plasmodium falciparum merozoite surface protein-4 (MSP4) with protection against clinical malaria was investigated in a Senegalese community living in an area of moderate, seasonal malaria transmission. Blood samples were collected at the end of an 8-month long dry season without any recorded parasite transmission from 206 residents enrolled in a prospective follow-up study. Active daily clinical monitoring was implemented during the subsequent five months. Entomologic monitoring documented parasite transmission during the first three months of follow-up. Serum IgG levels were determined by ELISA against three MSP4 baculovirus-encoded recombinant protein constructs, namely the full-length MSP4p40, MSP4p30 devoid of a highly polymorphic sequence stretch and the conserved C-terminal EGF-containing MSP4p20, as well as against a merozoite crude extract. Community seroprevalence against all three constructs was quite high, the lowest being against MSP4p30. Seroprevalence and antibody levels against the three MSP4 constructs were age-dependent. IgG1 dominated the anti-MSP4p20 responses, while both IgG1 and IgG3 were observed against MSP4p40. Anti-MSP4 antibodies were associated with the antibody-dependent respiratory burst (ADRB) activity in a functional assay of merozoite phagocytosis by polymorphonuclear cells. Importantly, high antibody levels against each of the three MSP4 constructs at the end of the dry season were associated with reduced morbidity during the subsequent transmission season in an age-adjusted Poisson regression model (IRR = 0.65 [0.50-0.83], P<0.001 for responses over the median values). These data are consistent with a protective role for the naturally acquired anti-MSP4 antibodies and support further development of MSP4 as a candidate component of malaria vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2017.10.012DOI Listing

Publication Analysis

Top Keywords

three msp4
12
association antibodies
8
plasmodium falciparum
8
falciparum merozoite
8
merozoite surface
8
surface protein-4
8
protection clinical
8
clinical malaria
8
dry season
8
parasite transmission
8

Similar Publications

Anaplasma marginale, a tick-borne obligate intracellular rickettsia is incriminated to cause heavy economic losses throughout the tropical and subtropical regions, including India. However, studies highlighting the phylogeography and demographic dynamics of A. marginale are very scant from India.

View Article and Find Full Text PDF

Molecular and serological detection of Anaplasma spp. in small ruminants in an area of Cerrado Biome in northeastern Brazil.

Ticks Tick Borne Dis

January 2024

Graduate Program in Animal Science, Universidade Estadual do Maranhã (UEMA), Av. Oeste Externa, 2220, São Cristovão, São Luís, MA, Brazil. Electronic address:

Anaplasmosis, caused by bacteria of the genus Anaplasma, is an important tick-borne disease that causes economic losses to livestock farms in many countries. Even though Anaplasma spp. have been detected in goats and sheep worldwide, few studies investigate the occurrence and genetic identity of these agents in small ruminants from Brazil.

View Article and Find Full Text PDF

Background: Tick-borne blood pathogens cause highly pathogenic diseases, which are associated with substantial economic losses in ruminants. Despite this, epidemiological research on these pathogens remains neglected in many countries. This study initiated a regional epidemiological survey that included the detection of molecular prevalence, associated risk factors, and gene sequencing, combined with phylogenetic analysis, targeting the two main tick-borne blood protozoan and rickettsial pathogens of Babesia, Theileria, and Anaplasma that infect small ruminants.

View Article and Find Full Text PDF

The increasing population of European bison (Bison bonasus) can contribute to the prevalence of zoonotic pathogens. The aim of the present study was to assess the presence of A. phagocytophilum infection in European bison tissues as well as ticks removed from European bison in Lithuania and Poland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!