Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We numerically and experimentally demonstrate polarization-dependent terahertz responses in a proposed metasurface of A-shape resonators. With the horizontal polarization incidence, the observed transmission window is formed by two resonance dips, corresponding to the inductive-capacitive resonance at the lower frequency and the high-order antisymmetric resonance at a higher frequency, respectively. When the incident wave is perpendicularly polarized, the transmission window arises from the plasmon-induced transparency spectral response. The origin of the polarization-sensitive resonance properties is revealed by mapping the electric field and terahertz-induced surface current in the proposed metamaterials. Moreover, the influence of the geometry of the A-shape microstructures on the transmission spectra is analyzed. These polarization-dependent metamaterials may provide more degrees of freedom in tuning the electromagnetic responses, thus offering a path toward robust metamaterials design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.020689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!