Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The first generation of monocentric multiscale gigapixel cameras used Keplerian designs to enable full field coverage. This paper considers alternative designs that remove the requirement that adjacent subimages overlap. Removing this constraint enables Galilean designs that reduce system volume and improve relative illumination and image quality. The entrance aperture can also be moved to more closely approximate telecentricity and gaps in the field of view can be filled using multiple co-boresighted MMS cameras. Even with multiple cameras, Galilean systems can still reduce the total volume by 10 times relative to previous Keplerian designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.020332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!