We discuss and evaluate a long wave infrared imaging spectrometer in terms of its opto-mechanical design and analysis, alignment, testing, and calibration. The instrument is a practical airborne sensor achieving high spectral resolution and sensitive noise equivalent delta temperature. The instrument operates in the 8 to 12.5 μm spectral region with 28.85 nm spectral sampling, 1 mrad instantaneous field of view, and >40° cross track field. The instrument comprises three uniform sub-modules with identical design parameters and performances. The sub-module design is based on a refractive foreoptics feeding an all-reflective spectrometer. The optical form of the spectrometer is a double-pass reflective triplet with a flat grating, which has a fast f/2 and high optical throughput. Cryogenic optics of 100 K is implemented only for the spectrometer. Assembly and thermal deformation and focusing adjustment design are particularly considered for this low temperature. All the mirrors of the spectrometer are opto-mechanical-integrated designed and manufactured by single-point diamond turning technology. We consider the center sub-module as an example, and we present its laboratory testing results and calibration; the results indicate the instrument's potential value in airborne sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.022440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!