We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.021388DOI Listing

Publication Analysis

Top Keywords

pump concept
12
thin-disk lasers
8
novel pump
8
single-frequency operation
8
standing wave
8
wave pattern
8
single-frequency oscillation
4
oscillation thin-disk
4
lasers phase-matched
4
phase-matched pumping
4

Similar Publications

Continuous compensation for cerebral dopamine deficiency represents an ideal treatment for Parkinson's disease. Dopamine does not cross the digestive and blood-brain barriers and is rapidly oxidized. The new concept is the intracerebroventricular administration of anaerobic dopamine (A-dopamine) using an abdominal pump connected to a subcutaneous catheter implanted in the third ventricle, near the striatum.

View Article and Find Full Text PDF

Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System.

Micromachines (Basel)

November 2024

Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, 80333 Munich, Germany.

Despite major advances in the field of actuator technology for microsystems, miniaturized microfluidic actuation systems for mobile devices are still not common in the market. We present a micropump concept and an associated mass flow sensor design, which, in combination, have the potential to form the basis for an integrated microfluidic development platform for microfluidic systems in general and microdosing systems in particular. The micropump combines the use of active valves with an electrostatic drive principle for the pump membrane and the valves, respectively.

View Article and Find Full Text PDF

The use of temporary left ventricular assist devices (tLVADs) for patients suffering from cardiogenic shock (CS) is becoming more common. This study examines the indications and outcomes of microaxial flow pumps (Impella, Abiomed Inc., Danvers, MA, USA) when cannulated through the axillary artery in patients with severe CS, with a particular focus on acute phase reactions and hemolytic responses.

View Article and Find Full Text PDF

Intravenous Pump Flow Accuracy: A Systematic Review.

J Infus Nurs

January 2025

Author Affiliations: Elaine Marieb College of Nursing, Elaine Marieb Center for Nursing & Engineering Innovation, University of Massachusetts Amherst, Amherst, Massachusetts.

Intravenous pumps (IVPs) deliver IV medications to millions of acute care patients each year and result in many adverse events reported to the US Food and Drug Administration (FDA). Although the use of IVPs has improved overall safety, there are still high rates of error that risk the safety of all patients, especially those of advanced age and those suffering from critical illness. Most of the documented errors are based on clinician reports, although there is reason to believe that errors due to flow rate inaccuracy go undetected and unreported.

View Article and Find Full Text PDF

Transmission matrix measurements of multimode fibers are now routinely performed in numerous laboratories, enabling control of the electric field at the distal end of the fiber and paving the way for the potential application to ultrathin medical endoscopes with high resolution. The same concepts are applicable to other areas, such as space division multiplexing, targeted power delivery, fiber laser performance, and the general study of the mode coupling properties of the fiber. However, the process of building an experimental setup and developing the supporting code to measure the fiber's transmission matrix remains challenging and time consuming, with full details on experimental design, data collection, and supporting algorithms spread over multiple papers or lacking in detail.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!