We demonstrate the thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite crystal. The lifetime ratio of lower and upper levels of Er in Cr,Er,Pr:GYSGG crystal is further reduced due to the optimized doping concentrations. The thermal effect of composite crystal is lower than that of Cr,Er,Pr:GYSGG crystal. A maximum pulse energy 342.8 mJ operated at 5 Hz and 2.79 μm is obtained on the composite crystal, corresponding to electrical-to-optical efficiency of 0.86% and slope efficiency of 1.08%. Under the same condition, these values on the Cr,Er,Pr:GYSGG crystal are only 315.8 mJ, 0.79% and 1.04%, respectively. Moreover, the composite crystal has also a relative high laser beam quality, exhibiting obvious advantage in reducing thermal effects and improving laser performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.25.021349 | DOI Listing |
Sci Rep
January 2025
Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, 532 10, Czech Republic.
Radio frequency magnetron co-sputtering method employing GeTe and Sc targets was exploited for the deposition of Sc doped GeTe thin films. Different characterization techniques (scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction, atomic force microscopy, sheet resistance temperature-dependent measurements, variable angle spectroscopic ellipsometry, and laser ablation time-of-flight mass spectrometry) were used to evaluate the properties of as-deposited (amorphous) and annealed (crystalline) Ge-Te-Sc thin films. Prepared amorphous thin films have GeTe, GeTeSc, GeTeSc, GeTeSc and GeTeSc chemical composition.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:
In the present study, we uncovered and validated potential biomarkers related to gout, characterized by the accumulation of sodium urate crystals in different joint and non-joint structures. The data set GSE160170 was obtained from the GEO database. We conducted differential gene expression analysis, GO enrichment assessment, and KEGG pathway analysis to understand the underlying processes.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Material Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim 7491, Norway.
The chemical flexibility of the tetragonal tungsten bronze (TTB) structure offers a large potential for compositional engineering. Cation size and vacancy concentration are known to affect its structure, cation disorder, and functional properties. However, the compositional complexity also makes the TTB structure challenging to understand.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: The National Institutes of Health Toolbox for Assessment of Neurological and Behavioral Function (NIHTB) was developed to address the need for a brief yet comprehensive instrument to facilitate more uniform assessment in large-scale research studies. Here, we investigated whether the cognitive measures of the NIHTB detect cognitive decline in biomarker-confirmed Alzheimer's disease (AD).
Method: We used data from N = 178 participants (age 76.
Acta Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.
The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!