We demonstrate a high peak power mode-locked Yb:CaF oscillator pumped by a single-mode laser diode. The laser operated in hybrid Kerr-lens and SESAM mode-locked regime. Its performance was optimized by varying the output coupler ratio. Pulses as short as 65 fs were generated with 0.4% transmission. Employing 5% output coupler enabled generation of 77 fs pulses with 46 kW of peak power (262 mW of average output power). We believe that such high peak powers can open a way to practical applications of single-mode diode-pumped ultrafast ytterbium lasers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.25.026289DOI Listing

Publication Analysis

Top Keywords

high peak
12
peak power
12
ybcaf oscillator
8
oscillator pumped
8
pumped single-mode
8
laser diode
8
output coupler
8
power
4
power ultrafast
4
ultrafast ybcaf
4

Similar Publications

Guidelines to Analyze ChIP-Seq Data: Journey Through QC and Analysis Considerations.

Methods Mol Biol

January 2025

Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

ChIP-Seq is used to study DNA-protein interactions, unraveling chromatin states and gene regulatory properties of transcription factors. ChIP-Seq involves immunoprecipitation followed by sequencing using Next-Generation sequencing approaches. The ENCODE consortium provides extensive guidelines for ChIP-Seq analysis.

View Article and Find Full Text PDF

Metabolite identification from 1D H NMR spectra is a major challenge in NMR-based metabolomics. This study introduces NMRformer, a Transformer-based deep learning framework for accurate peak assignment and metabolite identification in 1D H NMR spectroscopy. Unlike traditional approaches, NMRformer interprets spectra as sequences of spectral peaks and integrates a self-attention mechanism and peak height ratios directly into the Transformer encoder layer.

View Article and Find Full Text PDF

Receptor interacting protein kinase 1 (RIPK1) crucially upregulates necroptosis and is a key driver of inflammation. An effective PET radioligand for imaging brain RIPK1 would be useful for further exploring the role of this enzyme in neuroinflammation and for assisting drug discovery. Here, we report our progress on developing a PET radioligand for RIPK1 based on the phenyl-1-dihydropyrazole skeleton of a lead RIPK1 inhibitor, GSK'963.

View Article and Find Full Text PDF

Band selection is a common approach to reduce the data dimensionality of hyperspectral imagery. It extracts several bands of importance in some sense by taking advantage of high spectral correlation. In medical imaging, narrow-band imaging (NBI) is an imaging technique for endoscopic diagnostic medical tests, where light of specific blue and green wavelengths is used to enhance the detail of certain aspects of the surface of the mucosa.

View Article and Find Full Text PDF

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

ACS Appl Nano Mater

December 2024

Assistant Professor of Material Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, Arizona 85287, United States.

Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!